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Theoretical modeling of ion mobility in superfluid 4He
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A method for calculating hydrodynamic added mass within the framework of time-dependent bosonic density
functional theory (DFT) for superfluid 4He is developed. As a calibration of the model, it is shown to reproduce
the classical hydrodynamic limit for purely repulsive interactions. To model real systems for which experimental
data are available, the following ions were considered: Be+, K+, Ca+, Sr+, and Ba+ cations as well as the
F−, Cl−, I−, and Br− anions. The DFT model requires the ion-helium pair potential data as input, which were
obtained from electron structure calculations by employing coupled clusters theory. The resultant static liquid
density profiles as calculated by DFT were found to be in good agreement with previously published quantum
Monte Carlo data. The calculated added masses for the positive ions correlated directly with the experimentally
observed ion mobility data, by which the ions could be separated into two different categories based on the degree
of the first solvent shell following the ion. The calculated added masses for the negative ions were found to be in
disagreement with the existing experimental data, suggesting the possibility that other negatively charged species
were observed in previous experiments. The negatively charged ions are predicted to have mobilities (μ) within
the range 0.8–1.0 cm2 V−1 s−1 in superfluid helium at 1.3 K with the order μ(I−) > μ(Br−) > μ(Cl−) > μ(F−).

DOI: 10.1103/PhysRevB.86.144522 PACS number(s): 67.25.D−, 67.90.+z

I. INTRODUCTION

Characterization of ion mobilities in bulk superfluid helium
has been a subject of numerous experimental studies where an
external electric field is employed to drift the ions through
the liquid, resulting in a time-of-flight spectrum for the
species.1–4 The simplest of such ions is an electron, which
forms a relatively large solvation cavity size (bubble radius
Rb ≈ 18.5 Å) that can be attributed to the repulsive nature of
the electron-helium interaction and the large zero-point spread
of the electron due to its light mass.5,6 Due to this large volume
occupied, electrons exhibit a relatively low ion mobility in the
bulk (0.54 cm2 V−1 s−1 at T = 1.3 K).7 Indeed, most positive
ions at this temperature, such as Hen

+ (0.88 cm2 V−1 s−1),7

K+ (0.85 cm2 V−1 s−1),2,4 Rb+ (0.78 cm2 V−1 s−1),2

Cs+ (0.78 cm2 V−1 s−1),2 Be+ (0.81 cm2 V−1 s−1),8 Ca+

(0.98 cm2 V−1 s−1),2 Sr+ (1.01 cm2V−1s−1),2 and Ba+ (1.12
cm2V−1s−1),2 possess a higher mobility than the electron,
indicating that they have a smaller effective mass in the liquid.
Due to the relatively attractive interaction between the positive
ions and helium, most cations are thought to form Atkins’
“snowball” structures in the bulk, where the first solvent shells
consist of rigid layers of helium with densities near or above
that in the solid phase. Atkins’ snowball model for K+ predicts
an effective ion mass 45× the mass of a helium atom and a
radius of 6 Å.9 Ion mobility in superfluid helium is essentially
determined by the following aspects:10 (i) the number of
helium atoms dragged with the ion, (ii) dissipation of energy
through emission of sound when the ion is accelerated in the
liquid, (iii) roton emission when the Landau critical velocity
is exceeded, (iv) vortex nucleation when the corresponding
critical velocity is exceeded, and (v) interaction with thermal
excitations when T > 0 K. The first effect is independent

of the bubble radius (Rb) and does not depend strongly on
temperature provided that the rigidly bound solvent atoms
remain attached to the ion. The second effect depends on Rb

through ion acceleration (phonon emission), and for an inviscid
liquid it is given by 1

2Vρ0, where V is the bubble volume and
ρ0 is the bulk liquid density. In hydrodynamics, the combined
effect of (i) and (ii) leads to the concept of added mass (madd).
The third and fourth processes depend on temperature, slightly,
as the bulk dispersion relation changes somewhat as a function
of temperature in the superfluid phase. The last process is
strongly temperature-dependent as the thermal phonon and
roton densities increase as a function of temperature. Note that
at temperatures above ∼1 K, the ion-roton scattering process
dominates over phonons. The scattering process is sensitive to
the effective ion size in the liquid as the ion-roton scattering
cross section is proportional to the ion radius squared. For
example, a solvated electron in liquid helium predominantly
exhibits repulsive behavior toward helium, and hence the
contribution of the first effect (i.e., dragging of helium with
it) to its overall mobility is vanishingly small. Furthermore,
the typical velocities in the ion drift experiments were well
below the superfluid critical velocity, which leaves the electron
mobility to be mainly determined by roton-ion scattering and
to a minor extent to the emission of sound. Based on the
experimentally observed ion mobilities, the positively charged
ion snowball structures appear to have smaller effective bubble
radii than the electron.

Mobilities of negatively charged ions at 1.3 K, such as
Cl− (0.46 cm2 V−1 s−1),1 F− (0.47 cm2 V−1 s−1),1 I−
(0.45 cm2 V−1 s−1),1 Ba− (0.41 cm2 V−1 s−1),1 and Ga− (0.41
cm2 V−1 s−1),1 have been measured to have lower mobilities
than the electron. Due to the negative charge, it is expected that
the interaction between these ions and helium also exhibits
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significant binding due to the charge-induced polarization
interaction, and therefore they should form snowball structures
similar to those of the positive ions discussed above. Thus the
difference in mobilities between the positive and negative ions
should be related to the difference in their solvation cavity
size and the accompanying solvent shell structure (i.e., the
overall effective ion size in the liquid). Previous theoretical
investigations of the ion solvation structures in superfluid
helium have relied on the well-known semiempirical bubble
model11–13 or more accurate quantum Monte Carlo (QMC)
based methods,14–18 whereas the low-temperature ion mobility
has been discussed mostly in terms of the ion-roton collision
model3,19,20 or in terms of Stokes’ law.21,22 However, since the
ion-roton collision cross section depends on the square of the
ion radius in superfluid helium, the use of Stokes’ law is not
justified in this case.

In this study, we have carried out theoretical modeling
of Cl−, F−, I−, and Br− anions as well as K+, Be+, Ca+,
Sr+, and Ba+ cations in superfluid helium by bosonic density
functional theory (DFT). The main motivation is to develop
a reliable theoretical model to estimate the ion mobilities
and to investigate the origin of the experimentally observed
difference between the positive and negative ion mobilities.
The present calculations can be used to characterize the
effective ion sizes based on the experimental mobility data. The
paper is organized as follows: the employed DFT formalism is
delineated, followed by relevant electron structure calculations
of the pair potentials between the given ions and a ground-state
helium atom. The validity of the applied DFT approach, which
incorporates the ion-He pair potential, is validated against
previous QMC results. Finally, mobilities of these ions are
analyzed through time-dependent DFT calculations.

II. THEORY

The bosonic DFT model applied to describe superfluid 4He
and the corresponding numerical implementation have been
described in detail previously.23–25 All calculations included
the kinetic energy correlation term present in the original
Orsay-Trento (OT) functional as well as the solid helium
penalty term.26,27 The ground-state solution for the ion-liquid
system was obtained by the imaginary-time propagation
method. For both the imaginary- and real-time propagation,
the applied time step ranged from 0.2 to 5 fs with a cylindrical
spatial grid consisting of 4096 points along the z coordinate
and 2048 points along the radial dimension. A fixed 0.1 Å
step size was employed along both coordinates. The large
grid was chosen in order to minimize possible boundary
reflections of long-wavelength phonons created during the ion
drift dynamics. Rather than performing an analytic calculation
to eliminate the angular dependency from the OT functional
with subsequent direct numerical integration for the remaining
degrees of freedom,28 we employed a mixed Fourier(along
z)-Hankel(along r) transformation, which can be used to
calculate the underlying convolution integrals with greater
efficiently in two dimensions. Furthermore, only minimal
changes to the existing three-dimensional (3D) numerical
implementation of the OT functional are needed with this
approach. Note that a full 3D calculation employing the grid
size required in this study would need nearly 5 TB of memory,

which clearly exceeds the capacity of modern supercomput-
ers. In two dimensions, the same calculation requires only
∼1 GB of memory, which means that the calculations can be
executed with very modest memory requirements. In addition,
the 2D Fourier-Hankel transformation provided a significant
improvement in efficiency as compared to its 3D equivalent.
The terms containing dot products in the OT Hamiltoninan
(i.e., the kinetic energy correlation and the backflow) can
also be evaluated using this method by carrying out the
integrations in cylindrical coordinates, while retaining the
Cartesian form for the dot products. Both the 2D and 3D
versions of OT have been implemented in the LIBDFT library
and the underlying parallel grid library LIBGRID.29,30 The
bulk liquid calculations implemented the continuous liquid
edge by a Neumann boundary condition, whereas the helium
droplet calculations implied a Dirichlet boundary. During the
imaginary-time iterations, the bulk density was maintained in
the liquid at the simulation boundary by rescaling to the fixed
bulk value and by conserving the number of He atoms during
the iterations for the droplet calculations. The ion zero-point
spread inside the bubble was not included in the model as
the species considered are sufficiently heavy so that they are
localized in the middle of the solvation cavity (estimated full
width at half height <0.1 Å for the ion wave function). The
ion drift in an external electric field directed along the z

axis was included in the calculation through the additional
potential term V (z) = −qEz × z, where q is the ion charge,
Ez denotes the external electric field strength along the z axis
(10−7 a.u.), and z is the ion position z coordinate. Thus the
ion movement occurs along the z axis, whereas only sound
propagation may occur along the radial direction. The classical
degrees of freedom for the ion were propagated by using the
velocity Verlet algorithm31 alongside the time-dependent DFT
equation for the liquid. These two equations were included in
a predict-correct scheme to improve the numerical stability of
the method.

At T = 0 K, the number of helium atoms dragged with the
ion as well as dissipation of energy due to phonon emission
can be calculated from the instantaneous added mass (in units
of He atoms and excluding the ion mass):

madd(t) =
(

Ez

Ftot,z(t)
− 1

)
mion

mHe
, (1)

where Ftot,z is the total force acting on the ion (i.e., combined
external electric field and liquid response) and mion and mHe

are the ion and helium masses, respectively. The total force
acting on the ion is given by

Ftot,z(t) = Ez − ∂

∂z

∫
Vion-He(

∣∣r − r ′∣∣)ρ(r ′,t)d3r ′

= Ez −
∫ (

∂

∂z
Vion-He(

∣∣r − r ′∣∣)
)

ρ(r ′,t)d3r ′, (2)

where r = (x,y,z), r ′ = (x ′,y ′,z′), Vion-He is the ion-helium
pair potential, and ρ denotes the time-dependent liquid density.
To achieve numerically stable results, the derivative appearing
on the right-hand side of Eq. (2) was evaluated analytically
and the resulting function was then mapped on a spatial grid
by using linear interpolation. To further improve the stability,
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the integral form of Eq. (1) was used (in units of mHe):

madd(t) =
(

2Ez�z(t)

mionv2
z (t)

− 1

)
mion

mHe
, (3)

where �z is the ion displacement along the z axis and vz is
the z component of the ion velocity. The added mass can be
related to the hydrodynamic radius Rb through (assuming a
spherical object)

madd = mHe

∫ Rb

0
ρ̃(r)d3r, (4)

ρ̃(r) =
{

[ρ0 − ρ(r)]/2 + ρ(r) when ρ(r) < ρ0,

ρ(r) when ρ(r) � ρ0,
(5)

where Rb represents an effective ion radius, which accounts
for the movement of displaced liquid by the ion [the first line
in Eq. (5)] and the dragging of liquid with the ion [the second
line in Eq. (5)]. For a spherical object with no binding and a
Heaviside liquid density profile, this reduces to the familiar
expression from hydrodynamics:

madd = 1

2
Vρ0 = 2π

3
R3

bρ0. (6)

The key observable in the experiments is the ion mobility μ,
which is defined as the ratio between the observed ion velocity
(vion) and the applied external electric field strength (Ez):

μ = vion

Ez

. (7)

In the limit of zero temperature, the mobility can be
obtained from time-dependent DFT calculations by observing
the long-time limit for the added mass [Eq. (3)]. Note that at
0 K, the ion terminal velocity is limited by phonon (sound)
and eventually by roton/vortex (critical behavior) emission.

When T > 1 K, the present formulation of the time-
dependent DFT cannot be used to directly obtain the reduction
of ion mobility that occurs through thermal phonon/roton
scattering. In this regime, the ion mobilities are usually taken
to be proportional to the inverse of the ion-roton collision
cross section squared: μ ∝ (Rb + d)−2, where d corresponds
to the effective roton (quasiparticle) radius. Since for electron
bubbles Rb � d [d corresponds approximately to the size of a
single helium atom in the liquid; ∼4 Å (Ref. 10)], the mobility
is often taken to be proportional to just R−2

b . However, for
smaller ions, Rb and d may be comparable, and in this case d

must be included in the estimate. Provided that the ion-roton
cross sections follow this simple geometric proportionality, we
can obtain relative ion mobilities:3,10,32

μ1

μ2
= (Rb,2 + d)2

(Rb,1 + d)2
, (8)

where the indices 1 and 2 refer to the two different ions under
consideration. Note that in the limit of Stokes’ law, the relative
mobility would just depend on the ratio between the two radii.
In the temperature region of the relevant experiments (T �
1.2 K),2 the mobilities are dominated by roton rather than
phonon scattering, as the roton number density quickly out-
paces phonons above 1 K and thus the mobilities are expected
to be inversely proportional to R2

b rather than Rb as given
by Stokes’ formula.33 However, previously the application of

Stokes’ formula has provided excellent agreement with the
experimentally observed electron mobility data when used
together with the semiempirical charge mobility model of
Aitken et al.21,22

Previously, the spherical bubble radius Rb has been defined
as the mass barycenter of the bubble interface:34

∫ Rb

0
ρ(r)d3r =

∫ ∞

Rb

[ρ0 − ρ(r)] d3r, (9)

where ρ0 corresponds to the bulk liquid density. It is apparent
that this definition would fail when distinct solvation shells
around the impurity are present (e.g., for charged ionic
species). The formula based on the concept of added mass [i.e.,
Eq. (5)] is thus more general as it can account for the presence
of bound solvent layers appropriately. However, as elaborated
in the next section, the radius Rb appearing in Eq. (8) may not
necessarily correspond to that used in Eqs. (4) and (5) due to
the fact that the roton scattering process may be sensitive to
the solvent shell structure far away from the ion.

By increasing the ion velocity from the typically accessed
linear regime [i.e., where Eq. (7) holds], critical phenomena
can be observed.2 There are two possibilities for such behavior:
(i) roton emission and (ii) vortex nucleation by the ion. At T =
0 K, the first process may act as a limiting factor dictating the
terminal velocity for the ion, whereas the second is observed
at high velocities (i.e., high external electric field strengths).
Both phenomena can be modeled with time-dependent DFT
simulations by determining the abrupt changes in the ion
velocity versus its added mass, madd. When a new dissipation
channel becomes active, a sudden increase in madd should
occur.

III. RESULTS AND DISCUSSION

The ion-helium pair potentials were calculated by using
the restricted coupled clusters theory with single, double,
and perturbative connected triple excitations [CCSD(T)] as
implemented in the MOLPRO code.35,36 When this approach
is employed together with a large augmented basis sets (e.g.,
aug-cc-pV5Z), it has been shown to typically produce a wave-
number accuracy in the van der Waals region.37,38 Smaller basis
sets, such as those used here for K+, Sr+, and Ba+, may have, as
discussed later, a limited ability to fully recover the dispersion
interaction with He atoms. All the calculated pair potentials
were corrected for basis-set superposition error (BSSE) by the
counterpoise correction method of Boys and Bernardi.39 For
most species [F (Refs. 40 and 41), Cl (Ref. 42), Br (Ref. 43),
Ga (Ref. 43), and Be (Ref. 44)], an augmented correlation
consistent basis set aug-cc-pV5Z (AV5Z) was applied, whereas
cc-pV5Z (V5Z) was used for Ca and Ga, and a quadruple
zeta level Def2-QZVPPD basis set was used for K+,45 Sr+,45

and Ba+.45 The Sr and Ba basis sets include the inner core
electrons through the effective core potential approach, which
reduces the number of electrons requiring explicit treatment
of electron correlation. All ions considered in this study were
spherically symmetric with the exception of Ga−, which has a
3P ground state. The two possible He atom approaches toward
Ga− produce � and � molecular states, which were calculated
separately as the standard CCSD(T) method can be applied to
get the lowest root in each irreducible representation within
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FIG. 1. (Color online) Calculated pair potentials for halogen
anions interacting with a ground-state helium atom. Note that Ga− is
nonspherical as two possible electronic states (� and �) arise from
the outmost atomic s and p orbitals on He and Ga, respectively.

a given point group (i.e., C2v). To provide the pair potential
data in a functional form, the calculated data were fitted to the
following equation:

V (R) = A0e
−A1R − A2

R4
− A3

R6
− A4

R8
− A5

R10
, (10)

where A0 through A5 are constants for a given pair potential.
Despite the fact that this equation bears the exact same form
as is typically applied in describing atom-atom long-range
interactions, it should be stressed that the parameters given
here merely provide a way to parametrize the potential and
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FIG. 2. (Color online) Calculated pair potentials for the cations
K+, Be+, Ca+, Sr+, and Be+ interacting with a ground-state helium
atom.

that the individual values of the parameters should not be
interpreted to have any physical significance (e.g., Ai are not
to be interpreted as dispersion coefficients). The least-squares
fitting process of the ab initio data to Eq. (10) is often plagued
by the existence of local minima and problematic behavior high
in the repulsive wall. The latter issue is typically evidenced as a
rapid turnover of the function at short distances, after which it
tends toward −∞. For this reason, the pair potential parameter
set must also specify the minimum distance where the potential
is still valid on the repulsive wall (Rmin).

The calculated pair potential data for the anions and cations
are shown in Figs. 1 and 2, respectively. A comparison of the
current pair potentials with the previous literature values is

TABLE I. Overview of positive ion–He pair potentials: CCSD(T) denotes coupled clusters theory with single, double, and perturbative
triples; CI denotes configuration interaction; Exp-repulsion+disp denotes exponential repulsive wall combined with dispersion series;
HF+dispersion denotes Hartree-Fock for the repulsive wall combined with the standard dispersion series; MP4 denotes fourth-order
Møller-Plesset perturbation theory. The basis sets are described according to the standard notation; for details, see the given reference.
De and Rm denote the dissociation energy and the potential minimum, respectively.

Ion Method De (K) Rm (Å) Source

K+ CCSD(T)/Def2-QZVPPD 225 2.9 Present work
CCSD(T)/cVQZ 217 2.9 Present work
CI 255 2.85 Ref. 48
HF+dispersion 246 2.87 Ref. 49
Exp-repulsion+disp 237 2.90 Ref. 47
CI/Huzinaga 212 2.91 Ref. 46

Ca+ CCSD(T)/V5Z 39 4.4 Present work
CCSD(T)/Def2-QZVPPD 44 4.4 Present work
CISD/See Ref. 42 4.4 Ref. 50
Exp-repulsion+disp 73 4.1 Ref. 51

Be+ CCSD(T)/AV5Z 187 2.9 Present work
CCSD(T)/Def2-QZVPPD 157 3.0 Present work
CCSD(T)/d-AV5Z 192 2.92 Ref. 52
QCISD/Be:6-311++G(3df,3dp)/He:AVQZ 178 2.96 Ref. 53
MP4/6-311G(2df/2pd)//MP2/6-31G** 100 3.13 Ref. 54

Sr+ CCSD(T)/Def2-QZVPPD 36 4.6 Present work
Ba+ CCSD(T)/Def2-QZVPPD 26 5.1 Present work
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TABLE II. Overview of halogen ion–He pair potentials: CCSD(T) denotes coupled clusters theory with single, double, and perturbative
triples; CI denotes configuration interaction; Exp-repulsion+disp denotes exponential repulsive wall combined with dispersion series. The
basis sets are described according to the standard notation; for details, see the given reference. De and Rm denote the dissociation energy and
the potential minimum, respectively.

Ion Method De (K) Rm (Å) Source

F− CCSD(T)/AV5Z 104 3.3 Present work
CCSD(T)/AVQZ 108 3.25 Ref. 55
CCSD(T)/AV5Z 107 3.26 Ref. 56
CCSD(T)/VTZ + mid bond 106 3.27 Ref. 57

Cl− CCSD(T)/AV5Z 60 4.0 Present work
CCSD(T)/AVQZ 60 4.0 Ref. 55
CCSDT(T)/AVQZ 57 4.0 Ref. 58
CI/Huzinaga 63 4.1 Ref. 46
Exp-repulsion+disp 114 3.5 Ref. 47

Br− CCSD(T)/AV5Z 50 4.2 Present work
CCSD(T)/AVQZ-PP 47 4.30 Ref. 55
Exp-repulsion+disp 58 4.0 Ref. 47

I− CCSD(T)/AV5Z-PP 39 4.6 Present work
CCSD(T)/AVQZ-PP 36.2 4.70 Ref. 55

summarized in Tables I and II and the potential parameters
according to Eq. (10) are given in Table III. For the halogen
anion-helium pair potentials, the well depths and the minima
are in good agreement with the previously published results
using a similar level of theory, i.e., generally within 5 K for
energy at the potential minima and less than 0.1 Å for the
position of the minima. For the cations, there is a larger vari-
ation between the current and the previously published data.
For K+-He, for example, the previous calculations have either
relied on lower-level ab initio methods [e.g., the configuration
interaction with single and double excitations method (CISD)]
to obtain the van der Waals attraction (dispersion), or on the
Hartree-Fock (HF) method to approximate the form of the
repulsive wall combined with a dispersion series derived from
experimental data.46–49 Note that since the standard CISD
method is not size-consistent, the counterpoise-type BSSE
correction cannot be applied. Depending on the basis set
employed, this can introduce significant inaccuracy into the
pair potentials, which should ideally vanish in the limit of a
complete basis set. Note that the CCSD(T) method applied
in the present study is size-consistent, which allows BSSE
correction. The above semiempirical technique, based on using
HF repulsion and dispersion determined by experimental data,
is not a straightforward approach for two reasons: (i) the

dispersion coefficients must be known accurately based on
the available experimental data, and (ii) there is a delicate
balance between the HF-derived repulsive wall and the van
der Waals interaction, which can amplify the error in the
overall pair potential and especially near the van der Waals
minimum. For the K+-He interaction, we considered two
different basis sets (Def2-QZVPPD and cVQZ; see Table I),
which produced identical potential minima positions but the
well depths differed by 8 K. For consistency, we employ the
Def2-QZVPP basis results in this study as this basis set is also
available for the heavier nuclei. However, it appears that this
basis set underestimates the well depth by 15% for Be+-He,
and one would expect this level of accuracy to extend to the
heavier ions as well. However, by comparing the performance
of this basis set for Ca+ against the unaugmented V5Z, it
appears to provide a similar level of accuracy. Hence it is
expected that the error would be less than the worst-case
estimate of 15% based on Be+-He. The nonspherical Ga−-He
pair potential data are only given for reference, as they were
not employed in the following DFT calculations.

The present form of the OT functional has been successfully
applied earlier to describe the solvation of Be+ as well as
the liquid-solid phase transition.26,27 To verify that it can be
used to describe the solvation of the relatively strongly bound

TABLE III. Pair potential parameters for the ion-helium interaction (atomic units) according to the parametrization given in Eq. (10).

Ion A0 A1 A2 A3 A4 A5 Rmin

Ca+ 4.83692 1.23684 0.273202 59.5463 1134.51 0.0 5.0
K+ 140.757 2.26202 0.722065 1.44039 × 10−3 356.303 1358.98 4.0
Be+ 4.73292 1.53925 0.557845 26.7013 0.0 0.0 3.4
Sr+ 3.64975 1.13451 0.293483 99.0206 693.904 0.0 5.0
Ba+ 10.5807 1.24428 0.695007 31.9518 2087.89 0.0 7.3
Cl− 11.1909 1.50971 0.721860 17.2434 0.0 0.0 4.2
F− 5.16101 1.62798 0.773982 1.09722 0.0 0.0 4.1
I− 13.6874 1.38037 0.696409 37.3331 0.0 0.0 4.1
Br− 12.5686 1.45686 0.714525 24.1140 0.0 0.0 5.0
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FIG. 3. (Color online) Comparison between the calculated liquid
density profiles from DFT (continuous black line) and previous QMC
calculations (dashed red line).15,16,27

ions, a comparison between QMC and the present OT-DFT
calculations is given in Fig. 3 for K+. The agreement is
excellent for the helium droplets, whereas for the bulk, there
is a noticeable difference in the first solvation shell, with
OT-DFT predicting slightly higher density than QMC. This
difference is rather surprising since the changes in the nearest
solvent layers appear to saturate after ∼128 He atoms and, in
this sense, it appears that there is even such a discrepancy
between the two QMC methods used for the droplet and
the bulk calculations. The static OT-DFT density profiles for
the other cations considered are shown in Fig. 4. With the
exception of Be+, these ions are much less bound than K+
and the variations in the liquid density are significantly less
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FIG. 4. (Color online) Calculated ground-state liquid densities as
obtained from DFT calculations for Be+, Ca+, Sr+, and Ba+.
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FIG. 5. (Color online) Comparison of the calculated liquid
density profiles for halogen anions in helium clusters. The continuous
black line corresponds to present DFT calculations and the dashed
red line to previous QMC calculations.55

pronounced. The calculated density profiles for Be+ and Ca+
also compare favorably with respect to the first solvent shell
structure obtained in previous QMC calculations for clusters
with 70 He atoms.14 As shown for the anions in Fig. 5, however,
the comparison between the static density profiles obtained
from OT-DFT and QMC is not as straightforward. For F−, the
QMC calculations predict a higher density in the first solvent
shell as compared to OT-DFT, but the situation appears to
be the opposite for the rest of the ions. For F−, there is also
a significant difference in the second solvation shell density.
Unfortunately, the QMC data are only available for small He
clusters, thus precluding a more detailed analysis. Based on
the overview given in Table III, the observed difference cannot
be explained in terms of different pair potentials being applied
in the calculations, but the origin must lie between the applied
theoretical approaches for describing superfluid helium.

To demonstrate the applicability of Eq. (3) in calculating
the added mass within the DFT framework, a set of purely
exponential spherical potentials (see Table IV) with varying
radii was used. Note that for such exponentially repulsive

TABLE IV. Parameters for the exponentially repulsive potential,
A0 exp [−A1(r + A2)], along with the center of mass for the
interface (Rb) and the calculated added mass (madd).

A0 (Hartree) A1 (Å) A2 (Å) Rb (Å) madd (units of mHe)

3.8003 × 105 1.6245 −4.2 12.0 86.5
3.8003 × 105 1.6245 −2.6 10.2 46.2
3.8003 × 105 1.6245 −1.6 9.0 28.6
3.8003 × 105 1.6245 0.0 7.1 11.8
3.8003 × 105 1.6245 1.6 5.3 3.6
3.8003 × 105 1.6245 2.1 4.8 2.2
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potentials, there is no rigid solvent shell around the impurity
and hence the added mass should be strictly related to the
bubble volume. The calculated added mass is plotted in Fig. 6
as a function of the interface barycenter [Rb; Eq. (9)] along
with the classical added mass [see Eq. (6)]. The results
obtained from these two models correlate well. A perfect match
was not expected, as the bubble structures from DFT exhibit a
finite interface width. Peculiarly, the DFT calculations exactly
match an expression that depends directly on the displaced
liquid volume with an artificial shift of the interface barycenter
to the region where the liquid density increases rapidly from
zero [i.e., Rb − C, C = 2.2 Å; cf. Eq. (6)]. It is expected that
the offset C depends on the interface width, and in the limit of
a Heaviside profile, this constant should converge toward zero
to recover the classical result.

Next, the actual ionic systems, which include the pro-
nounced solvent layer structure, are considered. After an
initial ion acceleration period (typically ∼3 ps) in the time-
dependent DFT calculations, the calculated instantaneous ion
added mass converges to approximately a constant value,
which is then taken as madd. However, we have observed
that small amplitude periodic oscillations persist (typically
±0.3 × mHe) even at long times, which appear to correspond
to acceleration/deceleration events of the ion in the liquid.
These in turn appear to be related to the ion dropping off
and picking up small amounts of liquid as it travels in
the superfluid. As in classical hydrodynamics, this leads to
dissipation of energy through emission of sound. This process
persists for several hundred picoseconds and therefore appears
to be part of the actual long-time ion propagation dynamics.
A summary of the calculated added masses using Eq. (3)
is shown in Table V (averaged over the small-amplitude
oscillations), along with the derived spherical bubble radii Rb

obtained from Eqs. (4) and (5). The current DFT calculations
reproduce the previous QMC derived added mass for K+
(Ref. 15) with a very good accuracy considering that the
two calculations did not even use exactly the same K+-He
pair potential. Note that Atkins’ estimate of Rb ≈ 6 Å for
K+ predicts that the second solvation shell would also follow
the ion. For the other ions considered, the calculated added
masses indicate either a complete following of the first full
solvent shell (e.g., Be+, K+) or only a partial following of
the first solvent shell for the less bound ions (e.g., Ca+,
Sr+, Ba+, and most of the halogen ions). In the current
calculations, the ion velocities reach ∼1 m/s at maximum
and therefore the dynamics is mostly sensitive to the phonon
response of the liquid. For such small velocities, hydrodynamic
approximations are also able to reproduce the correct ion added
masses, provided that liquid density profiles are available
that have been computed by some other method.59 In the
present case, however, DFT is used to calculate both the initial
stationary liquid density profile as well as the time evolution
in the presence of the external electric field, which allows
the method to be used without any external data, and it can
also be used for studying critical phenomena at higher electric
fields.

TABLE V. Ion added masses as obtained from time-dependent DFT calculations using Eq. (3), the derived bubble radii according to
Eqs. (4) and (5), and experimental mobilities μ at 1.3 K are shown.1,2,4,7,8 Note that the added mass madd excludes the ion mass and is
given in units of mHe. The electron bubble radius and its added mass were approximated based on the previously published data,5,10 and the
QMC reference data for K+ were taken from Ref. 15. The calculated values of Rb by using both Eq. (8) and Stokes’ law are also shown for
comparison (electron mobility and radius as the reference).

Ion madd (madd QMC) Rb (Å) [Eq. (5)] Rb [Eq. (8)] Rb (Stokes) μ (cm2 V−1 s−1)

Be+ 19.7 5.9 14.4 12.7 0.81
K+ 17.2 (17.4) 5.6 13.9 12.1 0.85
Sr+ 4.1 4.3 12.5 10.2 1.01
Ca+ 4.3 4.4 12.7 10.5 0.98
Ba+ 4.0 4.7 11.6 9.0 1.12
F− 13.0 6.9 20.1 21.4 0.47
Cl− 9.0 4.5 20.4 21.9 0.46
I− 4.5 4.5 20.6 22.4 0.45
Br− 4.8 4.3
e− 170 18.5 0.54
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Table V also includes estimates for Rb by using Eq. (8)
and Stokes’ law. Since Stokes’ law should not be applicable
in the present case, we concentrate on comparing the Rb

derived from the added mass calculation with the Rb from
the ion-roton scattering formula. It is clear that there is a
significant difference between the two radii, approximately 8
Å. The radii derived using Eq. (8) appear to correlate with the
position near the weak fourth through fifth solvent shells (cf.
Fig. 4). The density oscillations in this region have very small
amplitude, ∼2% from the bulk density, but these may still be
sufficient to trigger roton scattering from the bubble. Based
on this interpretation, it would then appear that the definitions
given by Eqs. (4) and (5) and Eq. (8) correspond to different
Rb, with the former related to the immediate first solvent
shell location and the latter to the much weaker solvent layer
structure farther away from the ion. This also means that
there should not be an exact relationship between the added
mass and the radius Rb derived from Eq. (8) because the
added mass is not necessarily a direct measure of the solvent
shell structure far away from the ion. However, a fairly good
correlation between the ion added mass and the ion mobility
can be obtained as demonstrated in Fig. 7 (the data point for
the solvated electron is off the scale). The ions can be clearly
divided into two different groups: (i) heavy ions, where the

first solvent shell follows the ion, and (ii) light ions, where
only a partial following of the first solvent shell takes place.
Note, however, that the electron impurity is different in this
respect as its added mass arises solely from Eq. (6). The
behavior of halogen anions is also shown in Fig. 7, where
it can be seen that they do not appear to belong to either
category. When this fact is combined (see also Table V) with
the static liquid density profile calculations, it appears highly
unlikely that the experimental halogen ion mobility data are
due to these ions but rather to some other negatively charged
species. Their mobilities should be approximately twice as
high as reported in the literature to correlate with the positive
ion data (see the arrows in Fig. 7).1 Furthermore, the mobilities
were reported to be below that of the solvated electron, which
has no bound central potential and thus should be the largest
ionic object possible in the liquid (excluding the possible
multielectron bubbles with a large number of electrons and
some molecular ions). In contrast, halogen atoms have high
electron affinities (∼3 eV), which causes the electron spatial
extent to be much smaller than for the solvated electron, and
they also have a significantly smaller spatial zero-point spread
inside the cavity than the electron due to their larger masses.
It therefore appears that the laser ablation method,1 which
was used to produce the ions above the superfluid, forms
other negatively charged species that are then observed in
the subsequent ion drift experiment. While at first it would
be tempting to assign these just to solvated electrons, there
appears to be a small variation of the observed ion mobility
depending on the atomic precursor,1 and therefore these ions
may be more complex than just electrons. The predicted
halogen ion mobilities based on the present calculations are
in the range of 0.8–1.0 cm2 V−1 s−1 at 1.3 K, and they should
have the following order: μ(I−) > μ(Br−) > μ(Cl−) > μ(F−).

Future work based on the developed method will concen-
trate on the study of critical phenomena in superfluid helium
(e.g., roton and vortex emission) when ions are accelerated
to higher velocities,2 and it will elucidate the origin of the
well-known exotic ion signals in a similar time-of-flight
measurement, where it will be essential to understand the
relationship between mobilities and bubble sizes.3
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