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Abstract

We propose a procedure for selecting basis function orientation to improve the efficiency of solution methodologies that
employ local plane-wave approximations. The proposed adaptive approach consists of a local wave tracking strategy. Each
plane-wave basis set within considered elements of the mesh partition is individually or collectively rotated to best align
one function of the set with the local propagation direction of the field. Systematic determination of the direction of
the field inside the computational domain is formulated as a minimization problem. As the resultant system is nonlinear
with respect to the directions of propagation, the Newton method is employed with exact characterization of the Jacobian
and Hessian. To illustrate the salient features and evaluate the performance of the proposed wave tracking approach, we
present error estimates as well as numerical results obtained by incorporating the procedure into a prototypical plane-wave
based approach, the least-squares method (LSM) developed by Monk and Wang (1999) [1]. The numerical results obtained
for the case of a two-dimensional rigid scattering problem indicate that (a) convergence was achievable to a prescribed level
of accuracy, even upon initial application of the tracking wave strategy outside the pre-asymptotic convergence region, and
(b) the proposed approach reduced the size of the resulting system by up to two orders of magnitude, depending on the
frequency range, with respect to the size of the standard LSM system.
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1. Introduction

Use of wave equations to model physical phenomena is well documented with wide-ranging applications in
optics [2], seismology [3], radar [4], and ocean acoustics [5], along with many other fields in science and
technology. While the ubiquitous finite element method has served as a foundation for the solution of this
class of equations, issues that arise from the frequency dependence of the discretization, identified as a
pollution effect [6,7], have remained a topic of active research for over a half a century. Many attempts have
been made to overcome the difficulties related to this pollution effect. Relatively recently, approaches that
employ plane-waves as basis functions for Helmholtz problems have demonstrated significant potential to
numerically determine these solutions [1,8–21]. The oscillatory nature of plane-waves provides a natural
setting to more efficiently model highly oscillatory fields. Nevertheless, fields that propagate with a high
frequency remain difficult to compute, due to an increasing presence of numerical instabilities created upon
refined discretization and/or the augmentation of the basis sets with additional plane-wave functions. These
instabilities arise due to the numerical loss of linear independence of functions within the basis sets, as
observed and demonstrated in [21,22].

In response to the above numerical challenges, we propose an alternative procedure that can extend the
range of satisfactory convergence without significantly increasing the number of plane-waves and/or drasti-
cally refining the mesh. This can mitigate the nascent presence of near-linear dependencies that instigate
numerical breakdown. The essence of the proposed approach is to maintain a low number of plane-waves,
typically used to calculate fields propagating in the low frequency regime, to calculate fields at higher frequen-
cies. This is accomplished by allowing the elemental basis sets to rotate so as to align a basis function in the set
with the main direction of field propagation. In this manner, a more accurate approximation of the field is
expected to that obtained by rigid and often arbitrarily predefined orientations of the basis sets. The proposed
approach, which can be viewed as an adaptive-type strategy, is succinctly demonstrated by comparison of the
analytical solution to the numerical one for a plane-wave propagating at an angle h through a square wave-
guide domain of length a [23]. In the domain, a high frequency propagation is considered ðka ¼ 500Þ with the
wavenumber represented by k. Using a basis set of four canonically oriented plane-waves per element, over
100% relative error was determined with the least-squares method (LSM) [1] for a step-size h=a ¼ 1=100
for all propagation angles except those aligned with the predefined basis functions (0�, 90�, 180� and 270�),
as depicted in Fig. 1. However, if the basis functions were allowed to rotate so that one function within an
element aligns with the direction of propagation of the field, the “rotated” LSM delivered an error of
10�6% with a much larger step size: h=a ¼ 1=2, corresponding to a mesh partition of only two elements. Note
that the same degree of rotation was applied to each of the four basis sets which is a logical option due to
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Fig. 1. Sensitivity of the relative error to the angle of propagation for ka ¼ 500 and 4 plane-waves: LSM with h=a ¼ 1=100 (line) and
LSM-WT with h=a ¼ 1=2 (diamond symbols).
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the common directions of propagation through each element. In effect, allowing the basis functions to align or
track the direction of propagation of the field within a given element, improved the calculation accuracy while
mitigating discretization cost by a factor of 2500 in the case of the considered waveguide problem. We sub-
sequently will refer to this wave tracking (WT) method as LSM-WT in this study.

The above example is simple; it contains one direction of propagation whereas realistic objects generate
scattered fields with multiple directions of propagation. In this paper, we propose an approach to permit
the basis functions to rotate and systematically track the local direction of field propagation. In this manner,
the method can numerically solve direct scattering problems in domains containing fields with multiple direc-
tions of propagation. To this end, the proposed approach represents the scattered field at the element level by
a superposition of plane-waves where both the expansion coefficients (the nodes) and angles of orientation are
unknown and need to be determined. Computation of these unknowns can be expressed as a double minimi-
zation problem which is linear with respect to the nodes and non-linear with respect to the determination of
the angles of orientation of the basis functions. In this study, the Newton iterative method was employed to
address the nonlinear aspect of the formulation, although other methods can be employed, e.g., conjugate gra-
dient and genetic algorithms, [24,25]. The resulting smaller and linear systems corresponding to the scattering
problem and Newton iteration equations are solved by LU factorization. Although solution of the double
minimization problem appears to require determination of an increased number of unknowns, in point of fact,
the proposed WT formalism incurs a significantly smaller size than required by existing methods, as a coarser
mesh and lower number of basis functions are needed for a given level of accuracy. This effectively raises the
onset of numerical instabilities that arise from near-linear dependencies of the basis set functions at higher
frequencies. Consequently, the WT approach is designed to enhance convergence stability and reduce compu-
tational cost. Both factors can, in turn, extend the accessible range for the application of plane-wave based
solution methodologies to higher frequency scattering problems.

It should be emphasized that the proposed wave-tracking procedure is general and can be incorporated
into plane-wave based formulations that lead to minimization of a cost function. To exemplify application,
the algorithm delineated in Section 3.1 is developed in this study in conjunction with LSM (Section 3.2).
The accuracy and efficiency of the resultant LSM-WT method is assessed for a prototypical scattering
problem consisting of a sound-hard disk-shaped scatterer embedded in a circular computational domain
(Section 5). The calculated scattered acoustic field is subsequently compared to the field generated by
the (unmodified) LSM. Accuracies of the approximated fields obtained by LSM and LSM-WT are com-
pared by calculating the relative error in an H1-type norm. The proposed approach is found to converge
to a prescribed level of accuracy, even upon initial application of the Newton algorithm outside the
pre-asymptotic convergence region. The required size of the scattering system is reduced with LSM-WT
by up to two orders of magnitude, depending on the frequency range with respect to the standard LSM
system. Analysis of the resultant orientational angles reveals that significant, independent, basis set rota-
tions are required to achieve the targeted error thresholds. This indicates that (a) optimal orientational
angles cannot be predicted a priori and (b) a straightforward, sweeping approach would be ineffective,
due to exorbitant computational cost.
2. Preliminaries

To assess the performance of the proposed strategy, we consider the following prototypical Helmholtz
problem: direct acoustic scattering from a sound-hard object in the presence of an artificial exterior boundary
R as shown in Fig. 2. However, the wave-tracking procedure can accommodate other interior [26] as well as
other exterior boundary conditions (see e.g., Refs. [27,28] and references therein). The scattered field u is then
the unique solution of the boundary value problem:
ðBVPÞ
Duþ k2u ¼ 0 in X;

@nu ¼ g on C;

@nu ¼ iku on R;

8><>: ð1Þ



Fig. 2. Sample computational domain for the scattering problem.
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where X is a two-dimensional computational domain, @n is the normal derivative operator evaluated on the
respective boundaries C and R; k is a positive number representing the wavenumber, and g is a complex-val-
ued function. A standard example of such a function is given by:
gð~xÞ ¼ �@neik~x�~d ; ð2Þ
where~d is a unit vector representing the direction of the incident plane-wave. To numerically approximate the
scattered field, the computational domain X is partitioned into a regular triangulation T h of Nh quadrilateral-
or triangular-shaped elements, K:
X ¼
[Nh

j¼1

Kj: ð3Þ
Assume that solution of the BVP (see Eq. (1)) by plane-wave-based variational methods can be formulated to
be compactly expressed as a minimization of a cost function J:
Find uh 2 X h such that;

JðuhÞ ¼ inf
v2X h

JðvÞ;

(
ð4Þ
with the global space X h defined by:
X h ¼ fv 2 L2ðXÞ; j 8K 2 T h; vjK ¼ vK 2 X hðKÞg; ð5Þ
where element K 2 T h possesses nK basis functions. Hence, the local subspaces X hðKÞ# H 1ðKÞ are given by:
X hðKÞ ¼ vK : K ! CjvK ¼
XnK

j¼1

nK
j /K

j ; where nK
j 2 C

( )
; ð6Þ
where:
/K
j ð~xÞ ¼ eik~dK

j �ð~x�~x
K Þ; 1 6 j 6 nK ; ~x 2 K ð7Þ
with ~xK as the centroid of K, and ~dK
j as the direction of the propagation of the plane-waves, i.e.,

~dK
j ¼ ðcos hj; sin hjÞ. The set of angles {hj} is such that hj 2 ½0; 2pÞ and hj – hl if j – l. For example,
hj ¼ 2p ðj� 1Þ=ðnK � 1Þ; 1 6 j 6 nK :
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3. Solution methodology

3.1. The general tracking wave strategy

The proposed wave-tracking approach guides a set of local basis functions to align one function closely
with the orientation of the local (intra-element) propagation of the field, u. To this end, an adaptive strategy
is employed by which the direction of the initial choice of the local basis functions are rotated within each
element or an ensemble of elements, by employing a rotational matrix Ra corresponding to the following rota-
tion in R2,
Fig. 3.
orienta
Rað~xÞ ¼
cos a � sin a

sin a cos a

� �
x1

x2

� �
; a 2 ½0; 2pÞ ð8Þ
with the angle of rotation a employed to best align one function in the basis set with the direction of field prop-

agation. For each element K and angle aK , we define a new set of basis functions wK
j ðaKÞ

� �
j¼1;...;nK

by rotating

the considered plane-waves /K
j

� �
j¼1;...;nK

through the angle aK , as illustrated in Fig. 3.
wK
j ðaKÞð~xÞ ¼ /K

j ðRaK ð~xÞÞ; j ¼ 1; . . . ; nK ; 8K 2 T h: ð9Þ
Note that the resulting basis functions wK
j are also plane-waves that satisfy the Helmholtz equation in R2. The

resulting field uh which accommodates an arbitrary angle of field propagation hj is defined at the element level
as:
uhð~aÞjK ¼
XnK

j¼1

nK
j ðaKÞeik~djðaK Þ�ð~x�~xK Þ; 8K 2 T h; ð10Þ
where the new orientations are obtained by a counterclockwise rotation by angle aK , that is:
~djðaKÞ ¼ ðcosðhj þ aKÞ; sinðhj þ aKÞÞ: ð11Þ
Note that the unknown expansion coefficients nK
j now also depend on the unknown angle aK . Globally, the

field is defined across the computational domain as:
uhð~aÞ ¼
X
K2T h

uhðaKÞjKvjK ; ð12Þ
where vjK being the characteristic function of K. Note that the total number of basis functions specified is
N/ ¼ nK � Nh. The minimization problem defined in Eq. (4) is reformulated using the new rotated basis func-
tions given by Eq. (9). In this manner, the original minimization problem given by Eq. (4) becomes a double
minimization consisting of finding a vector angle ~h such that:
Basis set rotation to align one basis function with the direction of propagation in element, K: Initial basis set (dashed line), final
tion (solid line) with counterclockwise rotational angle given by aK .
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Find ~h 2 Dh and uhð~hÞ 2 X̂ hð~hÞ such that;

Jðuhð~hÞÞ ¼ inf
~a2Dh

inf
v2X̂ hð~aÞ

JðvÞ;

8<: ð13Þ
where Dh is the space corresponding to all possible directions of propagation of the field in the domain X:
Dh ¼ f~a 2 RNh ; 8K 2 T h; ~ajK ¼ aK 2 ½0; 2pÞg ð14Þ
and the modified global discrete space X̂ hð~aÞ is given by:
X̂ hð~aÞ ¼ fv 2 L2ðXÞ; 8K 2 T h; vjK ¼ vK 2 X̂ hðK; aKÞg ð15Þ
with~a is a given vector in RNh with coordinates defined as the rotational angle for each element K. The local
subspaces X̂ hðK; hKÞ# H 1ðKÞ are defined by:
X̂ hðK; aKÞ ¼ vK : K ! C; vK ¼
XnK

j¼1

nK
j wK

j ðaKÞ; where nK
j 2 C

( )
: ð16Þ
We may choose an exhaustive approach to track at the element level as indicated in Dh. However, it is pref-
erable from the standpoint of computational efficiency to use a priori knowledge or an adaptive strategy to
determine regions with similar directions of field propagation, and then stipulate a common basis set orienta-
tion for elements in these regions. Such an approach will lead to a significant computational cost reduction, as
demonstrated in the following. The computational domain X is partitioned into NX subdomains. Denoting
fXlg as the set of subdomains that possess elements with a common direction field propagation:
X ¼
[NX

l¼1

Xl; ð17Þ
where:
Xl ¼
[nl

h

j¼1

Kj; l ¼ 1; 2; . . . ;NX; ð18Þ
with nl
h elements K per subdomain Xl (see Fig. 4 for an illustrative example with 4 elements per subdomain

and 4 subdomains per quadrant). The double minimization problem given by Eq. (13) is re-formulated as
follows:
. Disk-shaped scatterer: Example of a mesh comprised as a 16-sided regular polygon with 4 radial and 16 angular elements.
arly adjacent elements are grouped into a given subdomain, specified by color and assigned a common angle of orientation.
mains are shown as replicated in each quadrant.
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Find ~h 2 eDh and uhð~hÞ 2 X̂hð~hÞ suchthat;

J ðuhð~hÞÞ ¼ inf
~a2eDh

inf
v2X̂hð~aÞ

J ðvÞ

8<: ð19Þ
with eDh #Dh, such that eDh ¼ f~a 2 Dh; ajXl
¼ al 2 ½0; 2pÞg. Hence, ~h is a vector in RNX where NX � N h and

Nh is the number of elements given by Eq. (3). The double minimization problem given by Eq. (19) can be
compacted to avoid unnecessary complexity in the notation:
Jðuhð~hÞÞ ¼ inf
~a2eDh

Lð~aÞ ð20Þ
with the cost function L defined as:
Lð~aÞ ¼ inf
v2X̂ hð~aÞ

JðvÞ: ð21Þ
For clarity and later reference, we also set:
Lh ¼ inf
~a2eDh

Lð~aÞ: ð22Þ
Solving the double minimization problem given by Eqs. (21) and (22) requires application of a descent method
or other optimization approaches such as the conjugate gradient method [24] or a genetic algorithm [25]. We
propose to determine this minimum by seeking the roots of the Jacobian operator denoted by ~_Lð~aÞ. In this
study, the Newton method is employed to determine the resulting non-linear system. This algorithm incurs
at iteration m the Newton iteration equation:
€Lð~aðmÞÞd~aðmÞ ¼ �~_Lð~aðmÞÞ ð23Þ
with €L as the Hessian, and d~a as the angular update. The solution of the linear system specified in Eq. (23),
yield the set of angular updates d~aðmÞ. For each iteration m the update is then applied to the set of basis
functions:
~aðmþ1Þ ¼~aðmÞ þ d~aðmÞ: ð24Þ
3.2. Wave tracking formulation as applied to the least-squares method

The following delineates the formulation of the proposed wave-tracking strategy in conjunction with the
least squares approach [1].
3.2.1. Pertinent LSM formalism

In this study, we apply the general wave-tracking formalism defined in the previous section in conjunction
with the least-squares method [1]. The cost function J given by Eq. (4) in the LSM format takes the form:
JðvÞ ¼
X

e:interior edge

1

he

Z
e
j½v�j2dsþ 1

k2he

Z
e
j½½@nv��j2ds

� �
þ

X
e�Ch[Rh

1

k2he

Z
e
j@nv� ikvRh

v� vCh
gj2ds ð25Þ
with he as the length of edge e; ½v� and ½½v�� denoting the jump of v across an interior edge of two adjacent
elements @K \ @K 0:
½v� ¼ vjK � vjK 0 ;
½½v�� ¼ vjK þ vjK 0 ;

ð26Þ
vCh
(resp. vRh

) is the characteristic function of Ch (resp. Rh), the inner (resp. outer) boundary, and @n is the
normal derivative operator evaluated with respect to the edge. The solution of the minimization problem given
by Eq. (4) is then obtained by solving the following Variational Formulation (VF) [1]:
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ðVFÞ
Find uh 2 V h such that :

aðuh;wÞ ¼ F ðwÞ; 8w 2 V h;

�
ð27Þ
where the Hermitian bilinear form að�; �Þ is given by:
aðv;wÞ¼
X

e:interior edge

1

he

Z
e
½v� �½w�dsþ 1

k2he

Z
e
s@nvts@nwtds

� �
þ
X

e�Ch[Rh

1

k2he

Z
e
ð@nv� ikvRvÞð@nw� i kvRwÞds

ð28Þ

and the linear functional F is given by:
F ðwÞ ¼
X
e�Ch

1

k2he

Z
e

gð@nwÞds; 8w 2 V h: ð29Þ
Last, the space V h is a finite dimensional space whose elements w satisfy Dwþ k2 w ¼ 0 in K; 8K 2 T h.

3.2.2. The LSM-WT method

In the following, we provide a characterization of the Jacobian~_Lð~aÞ and the Hessian €Lð~aÞ in the context of
the LSM formulation. Recall ~a! Lð~aÞ is an infinitely differentiable function.

Proposition 3.1. Let a 2 Dh. Then:

i. ~_Lð~aÞ 2 CNX and its lth coordinate, _Llð~aÞ, satisfies:
_Llð~aÞ ¼
@Lð~aÞ
@al

¼ 1

2

X
e�C

Z
e
@n _uh;lð~aÞ�gds; l ¼ 1; . . . ;NX; ð30Þ
where, _uh;lð~aÞ, the first-order partial derivative of uhð~aÞ with respect to angle al, is expressed as follows:
_uh;lð~aÞ ¼ _ua
h;lð~aÞ þ _ub

h;lð~aÞ; l ¼ 1; . . . ;NX ð31Þ
with
_ua
h;lð~aÞ ¼

X
K2T h

XnK

j¼1

_nK
l;jw

K
j ðaKÞ; _ub

h;lð~aÞ ¼
X

K�Xl

XnK

j¼1

nK
j

_wK
j;lðaKÞ ð32Þ
and
_wK
j;lðaKÞ ¼ @wK

j ðaKÞ
.
@al: ð33Þ
ii. €Lð~aÞ 2 CNX�NX and its entries €Lll0 ð~aÞ, satisfy:
€Lll0 ð~aÞ ¼
@2Lð~aÞ
@al@al0

¼ 1

2

X
e�C

Z
e
@n€uh;ll0 ð~aÞ�gds; l; l0 ¼ 1; . . . ;NX; ð34Þ
where €uh;ll0 , the second-order partial derivative of uhð~aÞ with respect to angles al and al0 , is expressed as follows:
€uh;ll0 ð~aÞ ¼ €ua
h;ll0 ð~aÞ þ 2€ub

h;ll0 ð~aÞ þ €uc
h;ll0 ð~aÞ; l; l0 ¼ 1; . . . ;NX ð35Þ
with
€ua
h;ll0 ð~aÞ¼

X
K2T h

XnK

j¼1

€nK
ll0 ;jw

K
j ðaKÞ; €ub

h;ll0 ð~aÞ¼
X

K�Xl

XnK

j¼1

_nK
j;l

_wK
j;l0 ðaKÞ €uc

h;ll0 ð~aÞ¼
X

K�Xl\Xl0

XnK

j¼1

nK
j

€wK
j;ll0 ðaKÞ ð36Þ
and
€wK
j;ll0 ðaKÞ ¼ @2wK

j ðaKÞ
.
@al@al0 : ð37Þ
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Proof. The key step to prove Proposition 3.1 is to establish that
Lð~aÞ ¼ 1

2

X
e�C

1

k2he

Z
e
@nuhð~aÞ�gds: ð38Þ
This property results from Eqs. (25) and (26) and then applying Green-Riemann theorem to Eq. (25). Then,
using the chain rule in Eq. (38) leads to the desired result in (i) and (ii). h

Remark 1. Consideration of the first- and second-order Fréchet derivatives _uhðaÞ and €uhð~aÞ allows easy deter-

mination of the expansion coefficients:~n,
~_nl, and

~€nl;l0 . The latter are required for construction of the Jacobian
~_Lð~aÞ and Hessian €Lð~aÞ that incur in the Newton iteration equation given by Eq. (23). Evaluation of the Fréchet
derivatives is achieved by solving the same variational problem with different right-hand sides, as demon-
strated in the following two results.

Proposition 3.2. Let ~a 2 Dh. Then, uhð~aÞ, _ua
h;lð~aÞ, and €ua

h;ll0 ð~aÞ are solutions of the variational problem:
ðVFÞ
Find ~uhð~aÞ 2 X̂ hð~aÞ such that :

að~uhð~aÞ;wK
j ðaKÞÞ ¼ G wK

j ðaKÞ
� �

; 8j ¼ 1; . . . nK ; 8K 2 T h

8<: ð39Þ
where the expression of the linear functional G depends on the sought-after field ~uhðaÞ as follows:

i. For ~uhð~aÞ ¼ uhð~aÞ, we have:
G wK
j ðaKÞ

� �
¼ F wK

j ðaKÞ
� �

; ð40Þ
where the field uhð~aÞ is given by Eq. (10) and the linear functional F is given by Eq. (29).
ii. For ~uhð~aÞ ¼ _ua

h;lð~aÞ, we have:
GðwK
j ðaKÞÞ ¼ F ð _wK

j;lðaKÞÞ � aðuhð~aÞ; _wK
j;lðaKÞÞ � að _ub

h;lð~aÞ;w
K
j ðaKÞÞ; ð41Þ
where the field _ua
h;lð~aÞ is given by Eq. (32), the linear functional F is given by Eq. (29), the bilinear form að�; �Þ is

given by Eq. (39), and _ub
h;lð~aÞ is given by Eq. (32).

ii. For ~uhð~aÞ ¼ €ua
h;ll0 ð~aÞ, we have:
GðwK
j ðaKÞÞ ¼ F ð€wK

j;ll0 ðaKÞÞ � 2að _uh;lð~aÞ; _wK
j;lðaKÞ � að _ub

h;lð~aÞ; €wK
j;ll0 ðaKÞÞ � 2að€ub

h;ll0 ð~aÞ; €wK
ll0 ;jðaKÞÞ

� að€uc
h;ll0 ð~aÞ;w

K
j ðaKÞÞ; ð42Þ
where the fields €ua
h;ll0 ð~aÞ, €ub

h;ll0 ð~aÞ and €uc
h;ll0 ð~aÞ are given by Eq. (36).

Proof. Property (i) results from substituting w ¼ wK
j ð~aÞ in VF (27). To prove property (ii), we consider first

Eqs. (39) and (40). We have:
aðuhð~aÞ;/K
j ðaKÞ ¼ F ðwjðaKÞÞ: ð43Þ
We differentiate with respect to aK
l and use the fact that að�; �Þ (resp. F (�)) is a bilinear (resp. a linear) form. We

obtain:
a
@uh

@al
;wK

j ðaKÞ
� �

þ a uhð~aÞ;
@wK

j ðaKÞ
@al

 !
¼ F

@wjðaKÞ
@al

� �
: ð44Þ
Then, substituting Eqs. (31)–(33) in Eq. (44) leads to the desired result given by Eqs. (39) and (41). The proof
of Property (iii) results from applying the second order derivative with respect to al and al0 to Eq. (43), and
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then substituting into the obtained result the expression of the second order partial derivative of uhð~aÞ given by
Eqs. (35)–(37). h

Corollary 3.1. The expansion coefficients ~n; f~_nlg, and f~€nll0 g are solutions of the following linear system:
A~X ¼ b
!
; ð45Þ
where A is an N/ � N/, Hermitian and positive definite matrix whose entries are of the form

a /K
j ;/

K 0

l

� �
; 8K;K 0 2 T h; 1 6 j 6 nK and 1 6 l 6 nK 0 , with the bilinear form að�; �Þ defined in Eq. (28). The

expression of the vector ~b depends on the target expansion coefficients as follows:

i. For ~X ¼~n, the jth coordinate of the vector ~b is given by:
bj ¼ F ðwK
j ðaKÞÞ; 8j ¼ 1; . . . nK ; 8K 2 T h ð46Þ
with the linear functional F given in Eq. (29).

ii. For ~X ¼~_nl, the jth coordinate of vector ~b is given by:
bj ¼ G wK
j ðaKÞ

� �
; 8j ¼ 1; . . . nK ; 8K 2 T h ð47Þ
with the linear functional G given in Eq. (41).

iii. For ~X ¼~€nll0 , the jth coordinate of vector ~b is given by:
bj ¼ GðwK
j ðaKÞÞ; 8j ¼ 1; . . . nK ; 8K 2 T h ð48Þ
with the linear functional G given in Eq. (42).

Upon determination of the set of differentiated expansion coefficients f _nlg and f€nll0 g by the above proce-

dure, the Hessian, €Lð~aÞ of the Newton system Eq. (23) can be constructed. At the algebraic level, Eq. (23)
becomes:
MðmÞ~X ðmÞ ¼~bðmÞ; ð49Þ

where MðmÞ is an NX � NX real and symmetric matrix whose entries are given by Mll0 ð~amÞ ¼ €Lll0 ð~amÞ (see Eq.
(34)). Matrix M is dense but is of much smaller dimension than the least-squares matrix A since NX � N/.
Hence, the linear system given by Eq. (49) can be solved using any direct method.

3.2.3. LSM-WT algorithm: summary
The proposed solution methodology for tracking the propagation direction of the field with the local basis

functions can be viewed as the following three-step strategy.

Step 1. Initialization

Define T h, the partition into N h elements K of the computational domain X, see Fig. 4 for illustra-

tion. For each element K, select a set of nK plane-waves /K
j

� �
j¼1;...;nK

. Note that specifying a constant

value for nK , i.e., stipulating the same number of basis functions for all elements in T h, is the simplest
choice and commonly used. Finally, we select the number and location of the subdomains, e.g., the
contiguously colored regions in Fig. 4, where we would be optimizing the angles of the basis func-
tions. In the considered mesh discretization, we chose h to be the element edge length along the radial
direction.

Step 2. At iteration m

Evaluate uhð~aðmÞÞ and first- and second-order Fréchet derivatives _uhðaðmÞÞ and €uhð~aðmÞÞ by solving one

linear system, A~X ¼ rhs, (see Eq. (45)), where A is an N/ � N/, Hermitian and positive definite
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matrix. A is a sparse matrix with a stencil width of 5nK . This task requires evaluation of
1
2
ðNX þ 1ÞðNX þ 2Þ different right-hand sides as defined in Eqs. (46)–(48). Then, we determine the

update d~aðmÞ by solving the linear system M~X ¼~b (see Eq. (49)) where M is an NX � NX, real, sym-
metric, and dense matrix. The orientational angles of the basis functions are then updated
~aðmþ1Þ ¼~aðmÞ þ d~aðmÞ.

Step 3. Stopping criterion

To stop the algorithm, we first record all the angles of basis functions in a nh � nK rectangular array

aðmÞ and their corresponding updates in a rectangular array daðmÞ. We stop the algorithm when the

relative successive variation kdaðmÞk
kaðmÞk is less than a prescribed tolerance level. The numerical investiga-

tion tends to indicate that 5% is a practical tolerance level, as illustrated in Section 5.
Remark 2. The proposed formulation can also accommodate p-type refinement in which the number of plane-
waves can be apportioned differently from element to element, i.e., nK need not necessarily be considered
constant.
4. Mathematical analysis

Throughout this section, we adopt the following notations and assumptions:

� T h is a regular triangulation of the computational domain X into triangular- or quadrilateral-shaped ele-
ments K i.e. there exists a positive constant ĉ that depends on X only such that:
8K 2 T h;
hK

qK
6 ĉ; ð50Þ
where qK denotes the radius of the disc inscribed in the element K centered at xG, the gravity center of K [29].
Note that he is the length of the edge e of the element K i.e. hK ¼ maxe�@Khe and h ¼ maxK2T h hK .
� For K 2 T h, we define the local space V ðKÞ as follows:
V ðKÞ ¼ v 2 H 1ðKÞ; jDvþ k2v ¼ 0 in K and @nv 2 L2ð@KÞ
	 


: ð51Þ
� V is a global space given by:
V ¼ v 2 L2ðXÞ; j 8K 2 T h; vjK 2 V ðKÞ
	 


: ð52Þ
� For v 2 V , we denote by jjj � jjj the norm associated with the Hermitian bilinear form að�; �Þ, given by Eq.
(28), as follows:
jjjvjjj ¼ faðv; vÞg1=2
; ð53Þ
that is,
jjjvjjj2 ¼
X

e:interior edge

1

k2he

ks@nvtk2
0;e þ

1

he
k½v�k2

0;e

� �
þ
X
e�C

1

k2he

k@nvk2
0;e þ

X
e�R

1

k2he

k@nv� ikvk2
0;e: ð54Þ
� For each element K 2 T h; k � k0;K (resp. j � j1;K) is the L2-norm (resp. H 1 semi-norm) on K.

� The following two classical inequalities [29] will be of subsequent use:
kwk0;e 6 ĉ
1

h1=2
K

kwk0;K þ h1=2
K jwj1;K

 !
; ð55Þ

k@nwk0;e 6 ĉ
1

h1=2
K

jwj1;K þ hh�3=2
K jwjh;K

 !
ð56Þ
where h 2 ð3=2; 2�.
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We recall the following standard properties that will also be of subsequent use:

Property 4.1.

i. Let Jð�Þ be the cost function given by Eq. (25). Then,
JðvÞ ¼ 1

2
aðv; vÞ �RðF ðvÞÞ þ 1

2

X
e�C

1

k2he

kgk2
L2ðeÞ; 8v 2 V ð57Þ
with RðzÞ representing the real part of z 2 C. Observe that:
JðvÞ ¼ 0 if and only if v 2 H 1ðXÞ \ V and v satisfies BVPð1Þ:

ii. Assume X to be a polygonal-shaped domain. Then, for any g 2 HsðCÞ with s > 0, the solution of BVP(1),

u 2 H hðXÞ, where h 2 ð3=2; 2�. Hence, u 2 V and JðuÞ ¼ 0.

4.1. Announcement of the main results

The following two theorems summarize the main results of this section. The first result provides an a priori
error estimate.

Theorem 4.1. Let u (resp. uh) be the solution of the boundary value problem BVP(1) (resp. the variational
problem VF (27)). Then, there exists a positive constant ĉ (ĉ depends on X only) such that:
ku� uhkL2ðXÞ 6 ĉð1þ khÞ inf
vh2V h

jjju� vhjjj; ð58Þ
where V h is any finite dimensional subspace of the space V given by Eq. (52).

The next result provides a posteriori error estimates that depend on the regularity of the scattered field u,
the solution of BVP(1).

Theorem 4.2. Let u (resp. uh) be the solution of the boundary value problem BVP(1) (resp. the variational

problem VF (27)). Then, there exists a positive constant ĉ (ĉ depends on X only) such that:
ku� uhkL2ðXÞ 6 ĉð1þ khÞ
X
e�C

1

k2he

Z
e
ðg � @nuhÞ�gds

 !1=2

: ð59Þ
In addition, if u 2 H Nþ2ðXÞ (and N P 1), then there exists a positive constant ĉ (ĉ depends on X and N only) such

that:
ku� uhkL2ðXÞ 6 ĉð1þ khÞNþ4ðkhÞN�1 kskgk1=2�s;C þ
XN�1

l¼0

1

klþ1
kgklþ1=2;C

 !
; ð60Þ
where s 2 ð1=2; 1Þ.

Remark 3. The following three observations are noteworthy:

� The proof of Theorem 4.1 uses the same argument introduced in [1]. However, unlike the approach used in
[1], our proof does not require the mesh to be uniform because of our choice of the weights in the cost func-
tion given by Eq. (25). In addition, Theorem 4.1 provides an a priori error estimate with an explicit depen-
dence in kh because of the use of the stability estimate derived in Theorem 4.3. This is not the case in
Theorem 3.1 in [1] in which the explicit dependence in h�1=2 only. Our estimate appears to be an interesting
improvement.
� Theorem 4.2 provides a practical a posteriori error estimate that can be employed for an adaptive mesh

refinement and/or subdomain partitioning strategy yielding fXlg. This estimate is very simple to evaluate
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at it involves the computation of the normal derivative of the scattered field over the edges of the interior
boundary C. These quantities do not add to the cost of the calculation, as they have been determined when
building the matrix A. Moreover, the intermediate analysis developed to prove Theorem 4.2 uses an inge-
nious argument relating Taylor series and plane wave expansions to prove approximation properties of
plane waves in Sobolev norms. Although results along theses lines are known, this analysis dispenses with
the need for integral operators, as done by Melenk and Sauter [30–32], and the rather “complicated” argu-
ments of Cessenat and Després [10]. Furthermore, it appears that our approach can be extended to the
three-dimensional case with no additional burden.
� When the incident field is a plane wave, the expression of g is given by Eq. (2), which is an analytical func-

tion. Hence, the regularity of u depends mainly on the regularity of the boundary C (since in practice the
exterior boundary R is an artificial boundary that can be chosen to be regular enough). Moreover, for the
case of g given by Eq. (2), we have kgks;C 6 ĉksþ1 for any s > 0. Therefore, since k P 1, the a posteriori
estimate given by Eq. (60) becomes:
ku� uhkL2ðXÞ 6 ĉð1þ khÞNþ4ðkhÞN�1k sþ1; ð61Þ
where s 2 ð1=2; 1Þ.
4.2. Preliminary properties and intermediate estimates

The goal of this section is to establish the properties and estimates needed to prove Theorems 4.1 and 4.2.

4.2.1. Preliminary properties

Let V h be any finite dimensional subspace of the space V given by Eq. (52). Let u (resp. uh) be the solution of
the boundary value problem BVP(1) (resp. the variational problem VF (27)).

Then, we have the following useful properties pertaining to the bilinear form að�; �Þ given by Eq. (28):

Property 4.2. The bilinear form að�; �Þ satisfies the following two properties:
i: aðu� uh; vhÞ ¼ 0; 8vh 2 V h: ð62Þ

ii: aðu� uh; uÞ ¼
X
e�C

1

k2he

Z
e
ðg � @nuhÞ�gds: ð63Þ
Proof. To establish Property i, we first observe that it follows from VF (27) that:
aðu; vhÞ ¼ F ðvhÞ; 8vh 2 V h # V : ð64Þ

Hence, Property ii is a direct consequence of combining Eq. (64) and the fact that uh also satisfies VF (27).

Next, we prove Property iii. First, it is easy to verify that:
aðu� uh; uÞ ¼ F ðuÞ � F ðuhÞ: ð65Þ

Hence, using the definition of F ð�Þ (see Eq. (29)), we deduce that:
aðu� uh; uÞ ¼
X
e�C

1

k2he

Z
e

g@nuds�
Z

e
g@nuhds

� �
: ð66Þ
which proves to Property ii. h

The next results are stability estimates on the solution of the boundary value problem BVP(1).

Lemma 4.1. Assume X to be a polygonal-shaped domain and k P 1. Let u 2 H 1ðXÞ be the solution of BVP(1)

with a boundary condition g 2 L2ðCÞ. Then, for any s 2 ð1=2; 1�, there is a positive constant ĉ that depends on X
and s only such that:
juj1;X þ kkuk0;X 6 ĉkskgk1
2�s;C: ð67Þ
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In addition, if X is C1 and g 2 HNþ1=2ðCÞ, for N 2 N, then u 2 H Nþ2ðXÞ and there is a positive constant, denoted

by ĉ that depends on X; s, and N only such that for any integer m such that 2 6 m 6 N þ 2, we have:
kukm;X 6 ĉ km�1þskgk1
2�s;C þ

Xm�2

l¼0

km�1�lkgklþ1=2;C

 !
: ð68Þ
Proof. Let g 2 L2ðCÞ and consider w 2 H 1ðXÞ the unique solution of the following Laplace-problem:
�Dwþ k2w ¼ 0 in X;

@nw ¼ g on C;

@nw� ikw ¼ 0 on R:

8>><>>: ð69Þ
Next, we set u ¼ u� w. Then, u 2 H 1ðXÞ and satisfies the following BVP:
Duþ k2u ¼ 2k2w in X;

@nu ¼ 0 on C;

@nu� iku ¼ 0 on R:

8>><>>: ð70Þ
Therefore, there is a positive constant, denoted by ĉ, that depends on X only such that [33]:
kkuk0;X þ juj1;Xþ 6 ĉk2kwk0;X: ð71Þ
In addition, since w is the solution of the Laplace-problem given by (69), then w satisfies:
jwj21;X þ k2kwk2
0;X � ikkwk2

0;R ¼
Z

C
g�wds: ð72Þ
We then deduce from taking the real part of Eq. (72) and the fact that k P 1 that:
kwk2
1;X 6 jwj

2
1;X þ k2kwk2

0;X 6

Z
C

g�wds

���� ���� 6 kgk1
2�s;Ckwks�1

2;C
ð73Þ
for any s 2 ð1=2; 1�.
On the other hand, there is also a positive constant denoted again by ĉ that depends on X and s only such

that:
kwks�1
2;C
6 ĉkwks;X 6 ĉkwk1�s

0;X kwk
s
1;X 6 ĉks�1 k2kwk2

0;X

� �1�s
2 kwk2

1;X

� �s
2

: ð74Þ
Moreover, using Eq. (73), it follows from Eq. (74) that:
kwks�1
2;C
6 ĉks�1

Z
C

g�wds

���� ����1=2

: ð75Þ
Consequently, it follows from Eqs. (73) and (75) that there is also a positive constant denoted again by ĉ that
depends on X and s only such that:
Z

C
g�wds

���� ���� 6 ĉks�1kgk1
2�s;C

Z
C

g�wds

���� ����1=2

ð76Þ
and thus,
Z
C

g�wds

���� ����1=2

6 ĉks�1kgk1
2�s;C: ð77Þ
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Finally, it follows from Eqs. (73) and (77) that there is also a positive constant, denoted again by ĉ, that
depends on X and s only such that:
jwj1;X þ kkwk0;X 6 ĉks�1kgk1
2�s;C: ð78Þ
Furthermore, since u ¼ uþ w, it follows from Eqs. (71) and (72) that there is also a positive constant denoted
again by ĉ that depends on X and s only such that:
kkuk0;X þ juj1;X 6 ĉðk2kwk0;X þ jwj1;X þ kkwk0;XÞ: ð79Þ
Hence, we obtain from Eqs. (78) and (79) that there is also a positive constant, denoted again by ĉ, that
depends on X only such that:
juj1;X þ kkuk0;X 6 ĉkskgk1
2�s;C; ð80Þ
which concludes the proof of Eq. (67).
Next, we prove Eq. (68). To this end, assume g 2 HNþ1=2ðCÞ, for N 2 N. We use the induction to prove that

u 2 H Nþ2ðXÞ. First, we know that u 2 H 1ðXÞ. For 1 6 m 6 N þ 1, assume u 2 H mðXÞ. Therefore,

uj@X
2 Hm�1

2ð@XÞ with 1
2 6 m� 1

2 6 N þ 1
2. Moreover, if follows from the regularity of g, that

@nuj@X
2 Hm�1

2ð@XÞ. On the other hand, Du ¼ k2u 2 HmðXÞ. Therefore, u 2 H mþ1ðXÞ and we have [34]:
kukmþ1;X 6 ĉ kDukm�1;X þ k@nukm�1
2;C

� �
ð81Þ
for some positive constant ĉ that depends on X only. Hence, u 2 H Nþ2ðXÞ. Furthermore, since u satisfies
BVP(1), then for 1 6 m 6 N þ 1, we have:
kukmþ1;X 6 ĉ k2kukm�1;X þ kgkm�1
2;C
þ kkukm�1

2;R

� �
: ð82Þ
Thus,
kukmþ1;X 6 ĉ k2kukm�1;X þ kgkm�1
2;C
þ kkukm;X

� �
: ð83Þ
Proceeding by induction, we then obtain, for 2 6 m 6 N þ 2, that:
kukm;X 6 ĉ kmkuk0;X þ km�1juj1;X þ
Xm�2

l¼0

km�2�lkgklþ1=2;C

 !
; ð84Þ
which can be re-written as follows:
kukm;X 6 ĉ km�1ðkkuk0;X þ juj1;XÞ þ
Xm�2

l¼0

km�2�lkgklþ1=2;C

 !
: ð85Þ
Eq. (68) is then a consequence of substituting Eq. (80) into Eq. (85). h

Next, let v 2 V and consider w 2 H 1ðXÞ the unique solution of the following BVP:
�Dw� k2w ¼ v in X;

@nw ¼ 0 on C;

@nwþ ikw ¼ 0 on R:

8>><>>: ð86Þ
The next result states a stability estimate on the solution of BVP(86) assuming that the boundary of the
domain X is only Lipschitz continuous. Note that a similar result has been established in [33] assuming the
computational domain being a polygonal-shaped domain. Similar estimates with different approaches can
be found for example in [35] and references therein.
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Lemma 4.2. Assume X to be a polygonal-shaped domain and k P 1. Then, w 2 H hðXÞ, where h 2 ð3=2; 2�. In

addition, there is a positive constant ĉ that depends on X and h only such that:
kkwk0;X þ k1�hjwjh;X 6 ĉkvk0;X: ð87Þ
Proof. The regularity of w 2 H hðXÞ, with h 2 ð3=2; 2� results from standard regularity results of the Laplace
operator [36,34]. In addition, we have:
kwkh;X 6 ĉ kvþ k2wkh�2;X þ kkwkh�3=2;R

n o
ð88Þ
for some positive constant ĉ that depends on X and h only.
In addition, since w 2 H 1ðXÞ, we have:
kkwk0;X þ jwj1;X 6 ĉkvk0;X: ð89Þ
Next, we estimate jwjh;X. To this end, we proceed in two steps.
Step 1. The goal here is to prove that
kwkh�3=2;R 6
ĉ

k2�h kvk0;X: ð90Þ
To this end, we first consider the following standard estimate:
kwkh�3=2;R 6 ĉkwkh�1;X: ð91Þ
In addition, since 1
2
< h� 1 < 1, then we also have the following interpolation result [36]:
kwkh�1;X 6 kwk
2�h
0;X kwk

h�1
1;X : ð92Þ
Therefore, Eq. (91) becomes:
kwkh�3=2;R 6 ĉkwk2�h
0;X kwk

h�1
1;X : ð93Þ
Furthermore, since k P 1, it follows from (89) that:
kwk1;X 6 k2kwk2
0;X þ jwj

2
1;X

� �1=2

6 ĉkvk0;X ð94Þ
and
kwk0;X 6
ĉ
k
kvk0;X: ð95Þ
Eq. (90) is then an immediate consequence of Eqs. (93)–(95).
Step 2. The goal here is to prove that:
kwkh�2;X 6
ĉ

k3�h kvk0;X: ð96Þ
It follows from BVP (86) that:
k2kwk�1;X ¼ kDwþ vk�1;X: ð97Þ
Hence,
k2kwk�1;X 6 jwj1;X þ kvk�1;X: ð98Þ
Consequently, there is a positive constant ĉ that depends on X only such that:
k2kwk�1;X 6 jwj1;X þ ĉkvk0;X: ð99Þ
Then, it follows from Eqs. (89) and (99) that there is a positive constant, denoted again by ĉ, that depends on
X only such that:
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k2kwk�1;X 6 ĉkvk0;X: ð100Þ
Furthermore, using again Eq. (89), we deduce from Eq. (100) that there is a positive constant, denoted again
by ĉ, that depends on X only such that:
k2kwk�1;X þ kkwk0;X 6 ĉkvk0;X: ð101Þ
We then conclude the proof of Eq. (96) using standard interpolation results [36] and the fact that
� 1

2
< h� 2 6 0.

We are now ready to prove Eq. (87). First, we have from Eq. (88) that:
kwkh;X 6 ĉ kvkh�2;X þ k2kwkh�2;X þ kkwkh�3=2;R

n o
: ð102Þ
Next, it follows from substituting Eqs. (90) and (96) into Eq. (102) that there is a positive constant, denoted
again by ĉ, that depends on X only such that:
kwkh;X 6 ĉ kvk0;X þ kh�1kvk0;X þ kh�1kvk0;X

n o
: ð103Þ
Therefore, Eq. (87) results immediately for using k P 1 and h 2 ð3=2; 2� into Eq. (103). h
4.2.2. Interpolation properties

We adopt throughout this paragraph the following additional notations:

� For K 2 T h, let x!G be the gravity center of K and qK the radius of the circle inscribed in K whose center
is x!G.

� We set:
rK ¼ min qK ;
p
3k

� �
ð104Þ
and consider BK ¼ Bð x!G; rKÞ, the ball of radius rK centered at x!G. Hence, BK # K. In addition, 8 x!2 BK and

for any d
!

such that j d!j ¼ 1, we have:
jk d
!� ð x!� x!GÞj 6

p
3

ð105Þ
and
cosðk d
!� ð x!� x!GÞÞP

1

2
: ð106Þ
� Let M 2 N, we set the following M plane waves:
/qð x!Þ ¼ eikdq
!
�ð x!� x!GÞ; q ¼ 1; 2; . . . ;M ; ð107Þ
where dq
!

is a unit vector representing the direction of the propagation of /q. Note that, using Eqs. (105) and

(106), we obtain /qð x!Þ satisfies the following property:
1

jBK j

Z
BK

/qð x!Þd x!
���� ����P 1

2
; q ¼ 1; 2; . . . ;M : ð108Þ
� For q ¼ 1; 2; . . . ;M , the direction of propagation dq
!

is written as follows: dq
!¼ ðdq1

; dq2
Þ. In addition, we

set:
zq ¼ dq1
þ idq2

; q ¼ 1; 2; . . . ;M : ð109Þ
Hence, jzqj ¼ 1 for q ¼ 1; 2; . . . ;M .
� We set N ¼ 2M þ 1. Then, for K 2 T h; ZðKÞ is a subspace of H NðKÞ, given by:
ZðKÞ ¼ fv 2 H NðKÞ; Dvþ k2v ¼ 0 in Kg: ð110Þ
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� ZhðKÞ is a finite-dimensional subspace of ZðKÞ defined by:
ZhðKÞ ¼ v : K ! Cjv ¼
XM

q¼1

bq/q; where bq 2 C

( )
: ð111Þ
The next proposition states preliminary interpolation properties to be employed to establish estimates on
the interpolation operator.

Proposition 4.1. For K 2 T h, there is a linear mapping
PN : ZðKÞ�!ZhðKÞ;

such that, 8v 2 ZðKÞ, we have:
Z

BK

@mðv�PN vÞd x!¼
Z

BK

�@mðv�PN vÞd x!¼ 0; m ¼ 0; . . . ;N ; ð112Þ
where @m ¼ ð@x1
þ i@x2

Þm and �@m ¼ ð@x1
� i @x2

Þm.

Moreover, for any p 2 N, there is a positive constant ĉ that depends on p and X only such that:
jPN vjp;K 6 ĉkpð1þ khKÞ
XN

m¼0

1

km jvjm;K ; 8v 2 ZðKÞ: ð113Þ
Proof. Let v 2 ZðKÞ, and define the vector b
!¼ ðb1; b2; . . . ; bNÞt 2 CM as follows:
bm ¼ 1
ðikÞNþ1�m

1
jBK j
R

BK

�@Nþ1�mvd x! m ¼ 1; 2; . . . ;N ;

bNþ1 ¼
R

BK
vd x!

bmþNþ1 ¼ 1
ðikÞm

1
jBK j
R

BK
@mvd x! m ¼ 1; 2; . . . ;N :

8>><>>: ð114Þ
We also consider the matrix A 2 CM ;M defined by
Amq ¼ zm�1
q ; 1 6 m; q 6 M : ð115Þ
Observe that A is invertible and kA�1k2 does not depend on K; k, and rK given by Eq. (104). Hence, there is a
unique n

!2 CM and a positive constant ĉ that depends on X only such that:
A n
!¼ b

! ð116Þ

and
k n
!k2 6 ĉk b

!k2:
On the other hand, it follows from Eq. (114) that:
k b
!k2

2 ¼
XM

m¼1

jbmj2

¼
XN

m¼1

1

k2ðNþ1�mÞ
1

jBK j2
Z

BK

�@Nþ1�mvd x!
���� ����2 þ 1

jBK j2
Z

BK

vd x!
���� ����2 þXN

m¼1

1

k2m

1

jBK j2
Z

BK

@mvd x!
���� ����2 ð117Þ
and then,
k b
!k2

2 ¼
1

jBK j2
Z

BK

vd x!
���� ����2 þXN

m¼1

1

k2m

1

jBK j2
Z

BK

�@mv d x!
���� ����2 þ Z

BK

@mvd x!
���� ����2

 !
: ð118Þ
Next, for each plane wave /q given by Eq. (107), zq given by Eq. (109), and nq given by Eq. (116), we set:
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bq ¼ zN
q nq

jBK jR
BK

/qð x!Þd x!
; q ¼ 1; 2; . . . ;M : ð119Þ
We also define the interpolation operator PN as follows:
PN v ¼
XM

q¼1

bq/q; 8v 2 ZðKÞ: ð120Þ
Since, for each m 2 N, we have:
@m/q ¼ ðikÞ
mzm

q /q and �@m/q ¼ ðikÞ
m 1

zm
q

/q;
then, it follows from Eq. (120) that:
@mPN v ¼
XM

q¼1

zN
q nq

jBK jR
BK

/qð x!Þd x!
ðikÞmzm

q /q; 8v 2 ZðKÞ: ð121Þ
Therefore,
Z
BK

@mPN vd x!¼ jBK j
XM

q¼1

zNþm
q nqðikÞm; 8v 2 ZðKÞ: ð122Þ
Consequently, using Eqs. (115) and (116), along with the definition of the vector b
!

given by Eq. (114), it
follows from Eq. (122) that:
Z

BK

@mPN vd x!¼ jBK jðikÞmbNþmþ1 ¼
Z

BK

@mvd x!; 8v 2 ZðKÞ: ð123Þ
Similarly, we also have:
Z
BK

�@mPN vd x!¼ jBK jðikÞmbN�mþ1 ¼
Z

BK

�@mvd x!; 8v 2 ZðKÞ: ð124Þ
Eqs. (123) and (124) conclude the proof of Eq. (112).
On the other hand, for p 2 N and K 2 T h, it follows from the definition of PN given by Eq. (120) that:
jPN vjp;K 6
XM

q¼1

jbqjj/qjp;K ; 8v 2 ZðKÞ: ð125Þ
Moreover, using Eq. (119) along with Eq. (108), we deduce that:
jbqj 6 2 jnqj; q ¼ 1; 2; . . . ;M : ð126Þ
Hence,
kbk2 6 2knk2 6 2kA�1k2kbk2: ð127Þ
In addition, it is easy to verify that for any K 2 T h and any plane waves /q given by Eq. (107), there is a
positive constant ĉ (ĉ depends on X only) such that:
j/qjp;K 6 ĉkphK ; q ¼ 1; 2; . . . ;M : ð128Þ
Therefore, it follows from substituting Eqs. (127) and (128) into Eq. (125) that there is a positive constant ĉ (ĉ
depends on X only) such that:
jPN vjp;K 6 ĉkphKkbk2; 8v 2 ZðKÞ: ð129Þ
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Next, we estimate kbk2. To this end, we observe that, by construction, we have:
kbk2 6 ĉ
XN

m¼0

1

jBK j

Z
BK

@mvd x!
���� ����þ Z

BK

�@mvd x!
���� ����� �

; 8v 2 ZðKÞ: ð130Þ
Hence,
kbk2 6 ĉ
XN

m¼0

1

jBK j1=2
ðk@mvk0;K þ k �@mvk0;KÞ; 8v 2 ZðKÞ ð131Þ
and therefore:
kbk2 6
ĉ
rK

XN

m¼0

jvjm;K ; 8v 2 ZðKÞ; ð132Þ
where rK is given by Eq. (104).
Furthermore, it follows from Eqs. (50) and (104) that:
hK

rK
6 max ĉ;

3

p
khK

� �
6 ĉð1þ khKÞ ð133Þ
for some positive constant denoted again by ĉ. Eq. (113) is then an immediate consequence of substituting Eqs.
(132) and (133) into Eq. (129). h

Before stating the second interpolation estimate, we prove the following technical Lemma.

Lemma 4.3. For K 2 T h, consider the subspace
W ðKÞ ¼ w 2 H 1ðKÞ
Z

BK

wd x!¼ 0

����� �
:

Then, there is a positive constant ĉ (ĉ does not depend on K) such that:
kwk0;K 6 ĉhKð1þ khKÞjwj1;K ; 8w 2 W ðKÞ: ð134Þ
Proof. Let a 2 C. Then, for any w 2 W ðKÞ, we have:
kwk0;K 6 kw� ak0;K þ jajjKj
1=2 ¼ kw� ak0;K þ

jKj1=2

jBK j

Z
BK

ðw� aÞd x!
���� ����: ð135Þ
Hence, using Eqs. (108) and (133), we deduce that there is a positive constant ĉ that depends on X only such
that:
kwk0;K 6 kw� ak0;K þ ĉ
hK

rK
kw� ak0;BK

6 ĉð1þ khKÞkw� ak0;K : ð136Þ
Finally, we have
inf
a2C
kw� ak0;K 6 ĉhK jwj1;K ; ð137Þ
which concludes the proof of Lemma 4.3. h

Proposition 4.2. There is a positive constant ĉ such that for any K 2 T h; v 2 ZðKÞ \ H Nþ1ðKÞ, and

m ¼ 0; 1; . . . ;N , we have:
jv�PN vjm;K 6 ĉð1þ khKÞNþ1�mhNþ1�m
K jv�PN vjNþ1;K : ð138Þ
Proof. Let v 2 ZðKÞ \ HNþ1ðKÞ. Then, PN v 2 ZhðKÞ# ZðKÞ \ H Nþ1ðKÞ. Consequently, w ¼ v�PN v 2 ZðKÞ
and therefore, it follows from Eq. (112) (see Proposition 4.1) that:
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Z
BK

@mwd x!¼
Z

BK

�@mwd x!¼ 0; m ¼ 0; . . . ;N : ð139Þ
On the other hand, we have
@x ¼
1

2
ð@ þ �@Þ;

@y ¼
1

2i
ð@ � �@Þ
and
D ¼ @ �@ ¼ �@@:
Hence, for j; l 2 N such that jþ l 6 N , we have:
@j
x ¼

1

2j

Xj

p¼0

j!
p!ðj� pÞ! @

p �@j�p
and
@l
y ¼

1

ð2iÞl
Xl

q¼0

l!
q!ðl� qÞ! @

q �@l�q:
Consequently, we have
@j
x@

l
yw ¼

1

2jþlil

Xj

p¼0

Xl

q¼0

j!l!
p!ðj� pÞ!q!ðl� qÞ! @

pþq �@jþl�p�qw:
Observe that if 2ðp þ qÞ 6 jþ l, we have @pþq �@jþl�p�qw ¼ Dpþq �@jþl�2ðpþqÞw. In addition, we also have
Dpþqw ¼ ð�k2Þpþq

w. Consequently, we have:
@pþq �@jþl�p�qw ¼ ð�k2Þpþq �@jþl�2ðpþqÞw:
Since 0 6 jþ l� 2ðp þ qÞ 6 jþ l 6 N , then it follows from Eq. (139) that:
Z
BK

@pþq �@jþl�p�qwd x!¼ 0:
Furthermore, if 2ðp þ qÞP jþ l, we have:
@pþq �@jþl�p�qw ¼ Djþl�ðpþqÞ@2ðpþqÞ�ðjþlÞw ¼ ð�k2Þpþq
@jþl�2ðpþqÞw:
Similarly, since 0 6 2ðp þ qÞ � ðjþ lÞ 6 2ðJ þ lÞ � ðjþ lÞ 6 N , it also follows from Eq. (139) that:
Z
BK

@pþq �@jþl�pþqwd x!¼ 0:
Finally, we can conclude that, for any j; l 2 N such that jþ l 6 N , we have:
Z
BK

@j
x@

l
ywd x!¼ 0:
Let 0 6 m 6 N and j; l 2 N such that jþ l ¼ m. Then, using Lemma 4.3, there is a positive constant ĉ (ĉ does
not depend on K) such that:
k@j
x@

l
ywk0;K 6 ĉð1þ khKÞhK j@j

x@
l
ywj1;K : ð140Þ
Since jþ l ¼ m, we deduce that:
jwjm;K 6 ĉð1þ khKÞhK jwjmþ1;K ; 0 6 m 6 N : ð141Þ
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Therefore, there is a positive constant, denoted again by ĉ (ĉ does not depend on K) such that:
jwjm;K 6 ĉð1þ khKÞNþ1�mhNþ1�m
K jwjNþ1;K ; 0 6 m 6 N : � ð142Þ
The next result is a key estimate for proving the main results of this paper (see Theorems 4.1 and 4.2).

Theorem 4.3. There is a positive constant ĉ that depends on X and N only such that for any

K 2 T h; v 2 ZðKÞ \ HNþ1ðKÞ, and m ¼ 0; 1; . . . ;N þ 1, we have:
jv�PN vjm;K 6 ĉð1þ khKÞNþ2�mhNþ1�m
K ðkjvjN ;K þ jvjNþ1;KÞ: ð143Þ
Proof. Let v in ZðKÞ \ H Nþ1ðKÞ and q ¼ 0; 1; . . . ;N � 1. Then, we have:
jvjq;K ¼
1

k2
kDvkq;K 6

ĉ

k2
jvjqþ2;K : ð144Þ
Hence,
jvjq;K 6
ĉ

k2p jvjqþ2p;K ; with 0 6 p 6
N þ 1� q

2
: ð145Þ
Therefore, we deduce that:
jvjq;K 6
ĉ

kNþ1�q jvjNþ1;K for N þ 1� q even

ĉ
kN�q jvjN ;K for N þ 1� q odd:

8<: ð146Þ
Consequently, it follows from Eq. (146) that there is a positive constant ĉ (ĉ depends on X only) such that:
XN

q¼0

1

kq jvjq;K 6 ĉ
1

kN jvjN ;K þ
1

kNþ1
jvjNþ1;K

� �
: ð147Þ
Let m ¼ 0; 1; . . . ;N and v in ZðKÞ \ H Nþ1ðKÞ. Then, it follows from Eq. (138) (see Proposition 4.2), Eq. (113)
(see Proposition 4.1), and Eq. (147) that there is a positive constant, denoted again by ĉ, that depends on X
only) such that:
jv�PN vjm;K 6 ĉð1þ khKÞNþ1�mhNþ1�m
K ðjvjN ;K þ jPN vjNþ1;KÞ: ð148Þ
Hence, using Eq. (113), we deduce that:
jv�PN vjm;K 6 ĉð1þ khKÞNþ1�mhNþ1�m
K jvjNþ1;K þ ð1þ khKÞ

XN

q¼0

kNþ1

kq jvjq;K

 !
6 ĉð1þ khKÞNþ2�mhNþ1�m

K ðkjvjN ;K þ jvjNþ1;KÞ: � ð149Þ
A direct application of the previous theorem is the following interpolation error estimate.

Corollary 4.1. Suppose ð1þ khKÞhK 6 1. Then, there is a positive constant ĉ that depends on X; N , and h such

that for any K 2 T h and v 2 ZðKÞ \ H Nþ1ðKÞ, we have:
jv�PN vjh;K 6 ĉð1þ khKÞNþ1�hhNþ2�h
K ðkjvjN ;K þ jvjNþ1;KÞ; ð150Þ
where 3=2 < h 6 2.
4.2.3. Intermediate estimates

We first establish a general result that can be viewed as a stability estimate with respect to jjj � jjj.
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Proposition 4.3. Assume that X to be a polygonal-shaped domain. Then, there is a positive constant ĉ (ĉ depends

on X only) such that:
kvk0;X 6 ĉð1þ khÞjjjvjjj; 8v 2 V : ð151Þ
Proof. For v 2 V , consider w 2 H 1ðXÞ the unique solution of BVP(86). Note that it follows from the standard
regularity results of the Laplace operator [36,34] that w 2 H hðXÞ with h 2 ð3=2; 2�. Next, we multiply the first
equation of BVP(86) by �v and integrate over X. Hence, it follows from using Green-Riemann theorem and the
fact that v satisfies Helmholtz equation that:
kvk2
0;X ¼

X
K2T h

Z
@K
ðw@n�v� �v@nwÞds; ð152Þ
which can be written as follows:
kvk2
0;X ¼

X
e:interior edge

Z
e
ðws@n�vt� ½�v�@nwÞdsþ

X
e�C

Z
e
ðw@n�v� �v@nwÞdsþ

X
e�R

Z
e
ðw@n�v� �v@nwÞds: ð153Þ
We substitute the boundary conditions of BVP(86) into Eq. (153). We then obtain:
kvk2
0;X ¼

X
e:interior edge

Z
e
ðws@n�vt� ½�v�@nwÞdsþ

X
e�C

Z
e

w@n�vdsþ
X
e�R

Z
e

wð@n�vþ ik�vÞds: ð154Þ
Thus,
kvk2
0;X ¼

X
e:interior edge

Z
e
ðws@n�vt� ½�v�@nwÞdsþ

X
e�C

Z
e

w@n�vdsþ
X
e�R

Z
e

wð@nv� ikvÞds: ð155Þ
Next, we apply Cauchy–Schwartz inequality to Eq. (155). We then obtain:
kvk2
0;X 6

X
e:interior edge

ðkwk0;eks@nvtk0;e þ k½v�k0;ek@nwk0;eÞ þ
X
e�C

kwk0;ek@nvk0;e þ
X
e�R

kwk0;ek@nv� ikvk0;e:

ð156Þ
Hence, using the definition of jjj � jjj (see Eq. (54)), we deduce that:
kvk2
0;X 6

X
e:interior edge

kh1=2
e kwk0;e þ h1=2

e k@nwk0;e

� �
þ
X
e�@X

kh1=2
e kwk0;e

( )
jjjvjjj: ð157Þ
Consequently, we have:
kvk2
0;X 6 jjjvjjj

X
K2T h

X
e�@K

kh1=2
K kwk0;e þ h1=2

K k@nwk0;e

� �
: ð158Þ
Next, we substitute the two classical inequalities given by Eqs. (55) and (56) into Eq. (158). We then
obtain:
kvk2
0;X 6 ĉjjjvjjj

X
K2T h

kkwk0;K þ khK jwj1;K þ jwj1;K þ hh�1
K jwjh;K

� �
: ð159Þ
Therefore, we have:
kvk2
0;X 6 ĉjjjvjjjðkkwk0;X þ ð1þ khÞjwj1;X þ hh�1jwjh;XÞ: ð160Þ
To conclude the proof we use the stability estimates of Lemma 4.2. It follows from Eqs. (160) and (87) that:
kvk2
0;X 6 ĉjjjvjjjð1þ khþ ðkhÞh�1Þkvk0;X: ð161Þ
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Since 3=2 < h 6 2, then 1=2 < h� 1 6 1. Consequently, it follows from Eq. (161) that there is a positive con-
stant, denoted again by bC which depends on X only, such that:
kvk0;X 6 ĉð1þ khÞjjjvjjj: �
In the following, we establish intermediate estimates involving the norm jjj � jjj.

Proposition 4.4. For h 2 ð3=2; 2�, we consider the space:
W h ¼ v 2 H hðXÞ; 8K 2 T h : vjK 2 V ðKÞ
	 


; ð162Þ
where V ðKÞ is the subspace given by Eq. (51).

Then, there exists a positive constant ĉ that depends on X and h only such that, for any v 2 W h, we have:
jjjvjjj 6 ĉ
X
K2T h

1

h2
K

kvk2
0;K þ

ð1þ khKÞ2

k2h2
K

jvj21;K þ
1

k2h4�2h
K

jvj2h;K

 !( )1=2

: ð163Þ
Proof. Since the considered triangulation T h is regular satisfying Eq. (50), then it follows from Eq. (54), that
there is a positive constant ĉ that depends on X only such that for any v 2 W h, we have:
kvjjj2 6 ĉ
X
K2T h

X
e�@K

1

k2hK

k@nvk2
0;e þ

1

hK
kvk2

0;e

� �
: ð164Þ
Using the classical inequalities given by Eqs. (55) and (56), it follows from Eq. (164) that there exists a positive
constant, denoted again by ĉ, that depends on X only such that:
jjjvjjj2 6 ĉ
X
K2T h

1

k2h2
K

jvj21;K þ
1

k2h4�2h
K

jvj2h;K þ
1

h2
K

kvk2
0;K þ jvj

2
1;K

 !
; ð165Þ
which concludes the proof of Proposition 4.4. h

The next result is a general error interpolation estimate with respect to the norm jjj � jjj.

Proposition 4.5. There is a positive constant ĉ that depends on X and N such that:
jjjv�PN vjjj 6 ĉð1þ khÞNþ3hN�1 jvjN ;X þ
1

k
jvjNþ1;X

� �
; 8v 2 X ; ð166Þ
where X ¼ fv 2 HNþ2ðXÞjDvþ k2v ¼ 0 in Xg, the mapping PN is defined in Proposition 4.1 (see Eq. (120)), and

h 2 ð3=2; 2�.

Proof. To establish Eq. (166), we first use the expression of jjj � jjj given by Eq. (54).
jjjv�PN vjjj 6 ĉ
X
K2T h

1þ khK

khK

� �2

jv�PN vj21;K þ
1

ðkh2�h
K Þ

2
jv�PN vj2h;K þ

1

h2
K

kv�PN vk2
0;K

 !1=2

: ð167Þ
Then, we apply Eq. (143) (see Theorem 4.3) in conjunction with Eq. (150), we obtain:
jjjv�PN vjjj6 ĉ
X
K2T h

ð1þ khKÞ2Nþ4

ðkhKÞ2
h2N

K þ
ð1þ khKÞ2Nþ4�2h

ðkh2�h
K Þ

2
h2ðNþ1�hÞ

K þð1þ khKÞ2Nþ4h2N
K

" #
k2jvj2N ;Kþjvj

2
Nþ1;K

� �( )1=2

:

ð168Þ
Therefore,
jjjv�PN vjjj 6 ĉ
ð1þ khÞNþ2

k
hN�1 þ ð1þ khÞNþ2�h

k
hN�1 þ ð1þ khÞNþ2hN

 !
ðkjvjN ;X þ jvjNþ1;XÞ; ð169Þ
which concludes the proof of Eq. (166). h
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Corollary 4.2. Assume @X to be infinitely differentiable, and let g 2 H Nþ1=2ðCÞ, where N 2 N. Then, there is a

positive constant ĉ that depends on X and N such that:
jjju�PN ujjj 6 ĉð1þ khÞNþ3ðkhÞN�1 kskgk1=2�s;C þ
XN�1

l¼0

1

klþ1
kgklþ1=2;C

 !
; ð170Þ
where u is the solution of BVP(1), s 2 ð1=2; 1Þ, and h 2 ð3=2; 2�.

Proof. This is a direct consequence of applying Lemma 4.1 (see Eqs. (67) and (68)) in conjunction with Eq.
(169). Indeed, we have:
jjju�PN ujjj 6 ĉð1þ khÞNþ3hN�1 kN�1þskgk1=2�s;C þ
XN�2

l¼0

kN�2�lkgklþ1=2;C

(

� 1

k
kNþskgk1=2�s;C þ

XN�1

l¼0

kN�1�lkgklþ1=2;C

 !)
: ð171Þ
Hence,
jjju�PN ujjj 6 ĉð1þ khÞNþ3ðkhÞN�1 kskgk1=2�s;C þ
XN�1

l¼0

1

klþ1
kgklþ1=2;C

 !
: � ð172Þ
4.3. Proof of the main results

First, we apply Property ii (see Eq. (62) in Property 4.2) with vh ¼ uh. This leads to:
jjju� uhjjj2 ¼ aðu� uh; uÞ ¼ aðu� uh; u� vhÞ; 8vh 2 V h: ð173Þ

Consequently,
jjju� uhjjj ¼ inf
vh2V h

jjju� vhjjj: ð174Þ
Then, using Eq. (151) (see Proposition 4.3), there exists a positive constant ĉ that depends on X only such that:
ku� uhk0;X 6 ĉð1þ khÞ inf
vh2V h

jjju� vhjjj; ð175Þ
which concludes the proof of Theorem 4.1. Furthermore, it follows from substituting Eq. (63) (see property iii.
in Property 4.2) into Eq. (173) that:
jjju� uhjjj2 ¼
X
e�C

1

k2he

Z
e
ðg � @nuhÞ�gds: ð176Þ
Consequently, it follows from Eq. (151) (see Proposition 4.3) and Eq. (176) that there exists a positive constant
ĉ that depends on X only such that:
ku� uhk0;X 6 ĉð1þ khÞ
X
e�C

1

k2he

Z
e
ðg � @nuhÞ�gds

( )1=2

; ð177Þ
which concludes the proof of the a posteriori estimate given by Eq. (59) in Theorem 4.2. Similarly, the a pos-
teriori error estimate given by Eq. (60) in Theorem 4.2 results from Proposition 4.3 and Corollary 4.2.

5. Illustrative numerical results

We consider a prototypical system comprised of a sound-hard, disk-shaped scatterer of radius a ¼ 1,
embedded in circular domain of radius R ¼ 2, in the presence of an incident plane-wave impinging from
the left, i.e., ~d ¼ ð1; 0Þ. The analytical solution for this configuration is expressed as Fourier series [21,37].
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uðr; hÞ ¼ 2
X1
m¼0

0

ð�iÞm C2
mH1

mðkrÞ þ C1
mH2

mðkrÞ
 �

cosðmhÞ; a 6 r 6 R; h 2 ½0; 2pÞ; ð178Þ
where the prime on the sum indicates that the first term is halved and the Fourier coefficients Cl
m satisfy:
Cl
m ¼ ð�1Þl J0mðkaÞ

Dm
Hl0

mðkRÞ � iHl
mðkRÞ

� �
; l ¼ 1; 2 ð179Þ
and
Dm ¼ H10

mðkaÞ H20

mðkRÞ � iH2
mðkRÞ

� �
�H20

mðkaÞ H10

mðkRÞ � iH1
mðkRÞ

� �
: ð180Þ
The total relative error of the numerical approximation of the scattered field, uh, can subsequently be
expressed by the modified H 1-norm:
kuh � uk bH1 ðXÞ
¼

X
K

kuh � uk2
H1ðKÞ þ

X
@K2T h

kuK 0

h � uK
h k

2
L2ð@K\@K 0Þ

 !1
2

: ð181Þ
This norm is considered a more accurate indicator than solely the standard, local, H 1-norm as it also takes
into account the jump of the solution across the edges of the elements. In this study, the series of the analytical
solution, given by Eq. (178) was truncated by selecting the first 2 	 kaþ 4 terms. Previously, we observed that
this choice was sufficient to achieve the combined convergence of the sum [21–23].

Remark 4. In spite of its apparent simplicity, there exist at least three attributes of this disk-shaped scattering
mathematical model. Firstly, we can assess the accuracy of the proposed method by evaluating the relative
error with respect to the analytical solution, given by Eq. (178). Secondly, the considered configuration admits
incoming traveling waves due to reflections at the outer boundary. Thus, the local main direction of field
propagation is not readily apparent. This makes the determination of the main local directions of propagation,
particularly for the far field, more challenging for the proposed wave-tracking approach, as compared to the
situation where a more efficient absorbing boundary condition is employed. Lastly, for realistic scatterers, e.g.,
non-convex shaped scatterers, multiple reflections at the scatter’s boundary may impede easy determination of
the main direction for the near field propagation. The considered configuration includes to some extent such a
complication through traveling waves reflected at the exterior boundary. These waves propagate toward the
inner boundary and therefore mimic the complexity of the propagation. Hence, the proposed configuration
appears to provide an adequate platform for assessing the performance of the proposed wave tracking
solution methodology.

The computational domain X is uniformly discretized into quadrilateral elements by approximating
the inner and outer boundary as regular matching polygons and radially partitioning the resultant
annulus. The mesh is generated as follows: the number of elements in the angular direction are 4 times
the number of radial elements nr. The total number of elements in the mesh can thus be calculated as
4n2

r , as illustrated in Fig. 4 for the case of nr ¼ 4. To locally approximate the scattered field, each ele-
ment contained a basis set of 4 plane-wave functions centered at the element centroid. The initial angle
of the plane-wave basis functions were defined by aligning one function along horizontal axis (1, 0) and
equally spanning the remaining basis functions by angles in increments of p=2, (see Eq. (7) with
nK ¼ 4).

A systematic approach was employed to assign radially aligned elements within a quadrant to comprise an
individual subdomain in the manner of Fig. 4. As such, the orientation of the elemental basis sets within a
given subdomain were locked to a common value. Each subdomain was then replicated to all four quadrants.
We recognize that it is not an optimal domain partition since the propagation of the scattered field is not peri-
odic with respect to the quadrant nor it is necessarily constant within a given radial cone. Clearly, this parti-
tioning strategy is relatively arbitrary and definitely not optimal which may hamper the efficiency of the
proposed wave-tracking method. A more intelligent subdomain assignment should rely on an adaptive strat-
egy based on a priori physics-based knowledge and/or a posteriori error estimation.
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Four frequency regimes were considered in this study: ka ¼ 1 and ka ¼ 2 (low-frequency), ka ¼ 5 (reso-
nance region), and ka ¼ 10 (higher frequency). For comparison purposes, we also directly applied LSM
and computed the relative error for these frequencies with variation of the mesh resolution h=a (see Table 1).
The performance of the two methods, LSM and LSM-WT, is assessed by determining the size of the corre-
sponding linear system, N/, for a prescribed accuracy level (see Table 2). Moreover, since we use a direct
method for solving the resulting linear systems, the number of nonzeros entries of the matrix A, employed
by both the LSM and LSM-WT, are reported in Table 2. Recall that this number is an indicator of factoriza-
tion cost that complements the total number of unknown values.

The Pardiso direct solver, versions 4.1.0–4.1.2 [38–41], was employed to solve the relatively large and sparse
system given by Eq. (45) with multiple right-hand sides: Eqs. (46)–(48). Solution of the comparatively smaller
and dense Newton system Eq. (49) was completed by LU factorization with an in-house routine. The follow-
ing numerical experiments were executed by a FORTRAN 90 code-base developed in this study with parallel
capability provided by the OpenMP application programming interface [42]. The program was run on the
Lonestar and Blacklight supercomputing workstations supported by the Texas Advanced Computing Center
and Pittsburgh Supercomputing Center respectively, as well as on a local AMD Opteron 4284 workstation
with 128 GB of memory.

5.1. Performance assessment for ka ¼ 1; ka ¼ 2

We set ka ¼ 1 and consider a discretization step size h=a ¼ 1=6, that is, we define a mesh with 6 radial and
24 angular elements, i.e., N h ¼ 144 as the total number of elements. The domain partition is comprised of 6
angular subdivisions replicated in each quadrant in the manner depicted in Fig. 4. The basis functions are 4
Table 1
Sensitivity of the relative error to the mesh refinement for four frequencies: ka ¼ 1, 2, 5, and 10. Values report the total relative error of the
scattered field approximated by LSM with 4 plane-waves per element.

ðh=aÞ�1 n ka 1 (%) 2 (%) 5 (%) 10 (%)

32 10
40 9 15
50 8 14
64 7 12
90 10

105 9 28
160 23
200 20
300 17
600 12.3
800 11.2
925 10.2

1500 7.5 21.7
1700 20.7
2000 19.5

Table 2
Comparison of the size of the global matrix A required to achieve a prescribed accuracy level for ka ¼ 1, 2, 5, and 10, and 4 plane-waves
per element. The total number of non-zero entries is listed as n0. Missing LSM values were unattainable with 128 GB of memory.

ka Relative error (%) LSM LSM-WT

ðh=aÞ N/(� 103) n0 (� 106) ðh=aÞ N/(� 103) n0 (� 106) iter.

1 10 1/32 16.4 0.327 1/6 0.576 0.011 3
2 10 1/90 129.6 2.59 1/10 1.6 0.032 5
5 10 1/925 13,690 271 1/50 40 0.798 13
5 5 . . . . . . . . . 1/90 129.6 2.59 16
10 10 . . . . . . . . . 1/160 409.6 8.19 20
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plane-waves initially oriented parallel to the cartesian axes. As stated earlier, these plane-waves will be rotated
by a common angle in radially aligned elements. Hence, the total number of unknowns (angles) in the Newton
system is NX ¼ 6. The obtained results are reported in Figs. 5 and 6, and Tables 1 and 2. The following include
observations and noteworthy points:

� Fig. 6 indicates that, at iteration 0, which corresponds to the plane-wave basis functions aligned parallel to
the cartesian axes, the error is about 22%. This accuracy level delivered by LSM indicates that LSM-WT
algorithm is applied very far from the pre-asymptotic convergence region. Yet, Fig. 6 and Table 2 show that

LSM-WT converges after only 3 iterations to the 10% prescribed accuracy level in the cH 1 -relative error
over the computational domain.
� Fig. 5 reveals that the LSM-WT algorithm changed the orientation of the angles from their original posi-

tions by up to 52� counterclockwise and 25� clockwise at iteration 3 (see Fig. 5). These individual rotations,
demonstrate that it would be (a) improbable to predict such orientation combinations at iteration 0 unless a
wave-tracing strategy such as the one suggested in [43] is employed, and (b) computationally intractable for
simpler combinatorial angle sweeping approaches to achieve such a level of accuracy.
� Fig. 6 describes the convergence history of the LSM-WT algorithm. As the minimization of the Newton

system is a multi-variate problem, it does not necessarily follow a path of monotonic decline as evident
by the peak in the first iteration in Fig. 6(a). It is an attribute of the Newton method by which the system
can “escape” local minima, although, for any given iteration, the method may also overshoot optimal
Fig. 5. Plane-wave basis function orientation (left) and pointwise relative error of the absolute value of the scattered field (right) for
ka ¼ 1, 4 plane-waves per element, h=a ¼ 1=6; NX ¼ 6, and Newton iterations 0 and 3. The basis set orientation of all elements within a
given subdomain are represented by their common value (left).
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Fig. 6. Convergence history for ka ¼ 1, 4 plane-waves, h=a ¼ 1=6, and NX ¼ 6. Total relative error (a) and relative change in the angles of
the plane-waves (b), as a function of iteration (solid line). The specified convergence threshold is denoted by the dotted line (b).
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convergence parametrization. Rapid convergence is apparent by the monotonic decline in the relative error
beginning at the second iteration. Fig. 6(b) also demonstrates that monitoring the relative successive change
in the angle is a practical stopping criterion with selection of 5% tolerance on this change is found to be
suitable.
� Table 2 demonstrates the efficiency of the method. Specifically, achieving 10% of the cH 1 -relative error with

4 plane-waves per element requires a mesh size of h=a ¼ 1=32 with LSM whereas, after 3 Newton iterations,
LSM-WT converges to 10% error with a mesh size of h=a ¼ 1=6. At each iteration, LSM-WT requires eval-
uation of one (576�576) linear system with 28 right-hand sides, in contrast to the comparative size of the
LSM system: 16,400 � 16,400. Therefore, there is a reduction in both non-zero and total unknown values
between LSM and LSM-WT by about a factor of 30.
� It should be acknowledged that LSM solves the system once while, at each Newton iteration, LSM-WT

needs to build A, multiple right-hand sides, and factor this system which add to computational cost. Note
that the cost of building matrix A is significantly reduced by eschewing numerical quadrature since all the
integrals are evaluated analytically over the elemental edges (1D intersections). This significantly reduces
the computational cost associated with building these matrices. The same observation applies to the con-
struction of the right-hand sides. The cost for solving the Newton system is marginal as its corresponding
matrix MðmÞ is a 6 � 6 matrix. Thus, the competing factors, the size of the system, and the number of iter-
ations required to achieve target accuracy govern computational efficiency. Due, in part, to the fact that
construction and solution of additional right-hand sides do not significantly lengthen computational time,
it is expected that the cost generated by multiple iterations becomes progressively attenuated as the size
increases for larger systems incurred by standard LSM.

In the following results, the frequency is doubled, i.e., ka ¼ 2 while maintaining 4 plane-waves per element.
We set the discretization step size h=a ¼ 1=10, that is, we define a mesh with 10 radial and 40 angular elements,
i.e., Nh ¼ 400 as the total number of elements. The domain partition is comprised of 10 angular subdivisions
replicated in each quadrant, i.e., NX ¼ 10, as the total number of subdomains. Results are shown in Figs. 7
and 8 and Tables 1 and 2. The following observations were taken:

� Fig. 8 indicates that, at iteration 0 which corresponds to the plane-wave basis functions aligned parallel to
the cartesian axes, the error is about 31%. This accuracy level delivered by LSM indicates that LSM-WT
algorithm is applied very far from the pre-asymptotic convergence region. Yet, Fig. 8 and Table 2 show that

LSM-WT converges after only 5 iterations to the prescribed accuracy level 10% in the cH 1 -relative error
over the computational domain.
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Fig. 8. Convergence history for ka ¼ 2, 4 plane-waves, h=a ¼ 1=10, and NX ¼ 10. Total relative error (a) and relative change in the angles
of the plane-waves (b), as a function of iteration.

Fig. 7. Error evaluation for the frequency ka ¼ 2, 4 plane-waves per element, h=a ¼ 1=10, and NX ¼ 10. Pointwise relative error of the
absolute value of the scattered field for (a) LSM and (b) LSM-WT at iteration 5.
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� Table 2 demonstrates the efficiency of the method. Specifically, achieving 10% of the cH 1-relative error with
4 plane-waves per element requires a mesh size of h=a ¼ 1=90 with LSM whereas, after 5 Newton iterations,
LSM-WT converges to 10% error with a mesh size of h=a ¼ 1=10. At each iteration, LSM-WT requires
evaluation of one (1600 � 1600) linear system with 66 right-hand sides in contrast to the comparative size
of the LSM system: 129,600 � 129,600. Therefore, there is a reduction in both non-zero and total unknown
values between LSM and LSM-WT by about a factor of 80. Note that the size of the Newton iteration
matrix MðmÞ is only 10 � 10 and therefore its factorization is computationally negligible.
� Doubling the frequency required refining the mesh by a factor of 1.7 (h=a ¼ 1=6 for ka ¼ 1 and h=a ¼ 1=10

for ka ¼ 2). However, the number of iterations increased from 3 to 5 for ka ¼ 1 to ka ¼ 2. Nevertheless, the
increased number of iterations is compensated by the gain in reduction in system size: a factor of 80 for
ka ¼ 2 versus a factor of 30 for ka ¼ 1.

5.2. Performance assessment for ka ¼ 5

In the following computational experiment, a frequency of ka ¼ 5 is considered, while maintaining 4 plane-
waves per element. We set the discretization step size h=a ¼ 1=50. Hence, the mesh possesses 50 radial and 200



M. Amara et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 473–508 503
angular elements, i.e., N h ¼ 10; 000 as the total number of elements. The domain partition is comprised of 50
angular subdivisions, replicated in each quadrant, i.e., NX ¼ 50. Results are shown in Figs. 9 and 10 and
Tables 1 and 2. The following observations are noteworthy:

� Fig. 10 indicates that, at iteration 0 which corresponds to the plane-wave basis functions aligned parallel to
the cartesian axes, the error is over 40% which corresponds to the accuracy level delivered by LSM. Clearly,
LSM-WT algorithm is starting from an initial setup that is completely deviated from the target. In spite of

this unacceptably high initial level of error, the algorithm attains 10% of the cH 1 -relative error after 13 iter-
ations, as reported in Fig. 8 and Table 2.
� Table 2 demonstrates the efficiency of the method. Specifically, achieving 10% of the cH 1 -relative error with

4 plane-waves per element requires a mesh size of h=a ¼ 1=925 with LSM whereas, after 13 Newton itera-
tions, LSM-WT converges to 10% error with a mesh size of h=a ¼ 1=50. At each iteration, LSM-WT
requires evaluation of one (40,000 � 40,000) linear system with 1326 right-hand sides in contrast to the
comparative size of the LSM system: 13,690,000 � 13,690,000. Therefore, there is a reduction in both
non-zero and total unknown values between LSM and LSM-WT by about a factor of 350. Note that
the size of the Newton iteration matrix MðmÞ is only 50 � 50 and therefore, the solution of the correspond-
ing system marginally impacts the overall computational cost.
Fig. 9. Error evaluation for the frequency ka ¼ 5, 4 plane-waves per element, h=a ¼ 1=50, and NX ¼ 50. Pointwise relative error of the
absolute value of the scattered field for (a) LSM and (b) LSM-WT at iteration 13.
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Fig. 10. Convergence history for ka ¼ 5, 4 plane-waves, h=a ¼ 1=50, and NX ¼ 50. Total relative error (a) and relative change in the angles
of the plane-waves (b), as a function of iteration.
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� The number of iterations m is increasing with the frequency. In this case, the algorithm converged after 13
iterations. Nevertheless, the increased number of iterations is compensated by the gain in reduction in sys-
tem size of a factor of 350.
� While error reduction by iterative application of the wave-tracking process is apparent by inspection of the

pointwise representation of the relative error over the entirety of the computational domain (Fig. 9), sig-
nificant reduction can be achieved in the regions with the highest LSM error, namely regions at angles
of approximately p=4 and �p=4, by use of an adaptive strategy for apportionment of elements into the
subdomains.
� The error and angular change profiles obtained as a function of iteration (Fig. 10) reveal more oscillations

in the first iterations than shown previously for the ka ¼ 1 and ka ¼ 2 calculations (Figs. 6–8). This is most
likely due to the fact that the initial error of the Newton algorithm is above 40% and therefore, the state
might proceed through multiple local minima. Nevertheless, after the fourth iteration, the algorithm exhib-
its monotonic convergence.

Proceeding further, we maintain the frequency at ka ¼ 5 and reduce the target error level to 5%. To this
end, we employ again 4 plane-waves per element, but refine the mesh to 90 radial and 360 angular elements,
i.e., 1=h ¼ 1=90. The domain was partitioned into 90 angular subdivisions replicated in each quadrant, i.e.,
NX ¼ 90. Results are shown in Figs. 11 and 12 and Tables 1 and 2. The following observations are noteworthy:

� Fig. 12(a) indicates that, at iteration 0 which corresponds to the plane-wave basis functions aligned parallel
to the cartesian axes, the error is 31% corresponding to the accuracy level delivered by LSM. Again, the
LSM-WT algorithm is starting from an unacceptably high initial level of error. However, the algorithm
attains 5% of the cH 1 -relative error after 16 iterations, as reported in Fig. 12(a) and Table 2.
� Table 2 reveals that even with a very fine mesh corresponding to h=a ¼ 1=1500, incurring solution of a

system comprised of about 36 million unknowns, LSM delivers a relative error of about 7.5%. Refining
the mesh further exceeded our computational capabilities and therefore the 5% error level is computa-
tionally intractable with LSM. On the other hand, LSM-WT delivers the 5% error level by solving, at
each Newton iteration, (a) a linear system with about 130 thousand unknowns and 4186 right-hand sides
and (b) a small Newton system with 90 unknowns.It is recognized that increasing the number of plane-
waves without refining the mesh can indeed improve the accuracy, as well as the computational cost of
LSM, as indicated in [1]. However, the objective of the proposed approach is precisely to avoid the neces-
sity to excessively increase the number of required basis functions which can lead to the risk of the loss of
their linear independence. Additionally, LSM-WT can even be more competitive if equipped with a
higher number of plane-waves in the elemental basis set provided that their linear independence is numer-
ically preserved.
Fig. 11. Error evaluation for the frequency ka ¼ 5, 4 plane-waves per element, h=a ¼ 1=90, and NX ¼ 90. Pointwise relative error of the
absolute scattered field for (a) LSM and (b) LSM-WT at iteration 16.
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Fig. 12. Convergence history for ka ¼ 5, 4 plane-waves, h=a ¼ 1=90, and NX ¼ 90. Total relative error (a) and relative change in the angles
of the plane-waves (b), as a function of iteration.
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� Reducing the error level from 10% to 5% was accomplished with LSM-WT by refining the mesh by less than
a factor of 2 and by almost doubling the number of unknown angles.

5.3. Performance assessment for ka ¼ 10

We consider here a frequency value of ka ¼ 10 and 4 plane-waves per element. The target error level in this
numerical experiment is 10%. We consider a discretization step size h=a ¼ 1=160, that is, we define a mesh with
160 radial and 640 angular elements, i.e., N h ¼ 102; 500 as the total number of elements. The domain partition
is comprised of 160 angular subdivisions replicated in each quadrant in the manner depicted in Fig. 4. The
four basis functions are initially oriented parallel to the cartesian axes. The obtained results are reported in
Figs. 13 and 14 and Tables 1 and 2.

� Fig. 14 indicates that, at iteration 0 which corresponds to the plane-wave basis functions aligned parallel to
the cartesian axes, the error is about 45%. This accuracy level delivered by LSM indicates that LSM-WT
algorithm is starting from an initial configuration setup that is completely deviated from the pre-asymptotic
region. In spite of this unacceptably high initial level of error, the algorithm attains 10% of the cH 1-relative
error after 20 iterations, as reported in Fig. 14(a) and Table 2.
Fig. 13. Error evaluation for the frequency ka ¼ 10, 4 plane-waves per element, h=a ¼ 1=160, and NX ¼ 160. Pointwise relative error of
the absolute value of the scattered field for (a) LSM and (b) LSM-WT at 20 iterations.
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Fig. 14. Convergence history for ka ¼ 10, 4 plane-waves, h=a ¼ 1=160, and NX ¼ 160. Total relative error (a) and relative change in the
angles of the plane-waves (b), as a function of iteration.
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� Table 2 reveals that, even with a very fine mesh corresponding to h=a ¼ 1=2000 incurring solution of a sys-
tem comprised of about 64 million unknowns, LSM delivers a relative error of about 19.5%. Refining the
mesh further exceeded our computational capabilities and therefore the 10% error level is computationally
intractable with LSM. On the other hand, LSM-WT delivers the 10% error level by solving, at each Newton
iteration, (a) a linear system with about 410 thousand unknowns and 13,041 right-hand sides and (b) a
small Newton system with 160 unknowns. Again, in practical terms, this calculation became feasible by
application of the wave-tracking strategy only.As stated earlier, it is possible to improve the accuracy as
well as the computational cost of LSM by increasing the number of plane-waves without refining the mesh.
We must reemphasize that the objective of the proposed approach is to avoid the necessity to excessively
increase the number of required basis functions which can lead to the loss of linear independence, notwith-
standing that near-linear dependencies may not occur at this frequency value and considered mesh.

6. Summary and conclusion

We have proposed a wave-tracking strategy to be incorporated into solution methodologies that employ
local plane-wave approximations. The key idea here is that each plane-wave basis set within considered ele-
ments of the mesh partition is individually or collectively rotated to best align one function of the set with
the main local propagation direction of the field. The goal in doing this is to maintain a low number of
plane-wave basis functions while preserving the accuracy level. Consequently, it is expected that the approach
will improve computational efficiency by avoiding numerical instabilities that result from near-linear depen-
dency that may occur from increasing the number of plane-waves.

The proposed approach leads to the solution of a double minimization problem, where the unknowns are
not only the usual nodes of the scattered field, but also the main directions of propagation. The least-squares
formulation suggested in [1], a prototypical plane-wave based method, is considered in this study to serve as a
suitable underpinning to be used in conjunction with the wave-tracking approach and, in its standard form, as
an evaluative benchmark. This resulting modified method is termed in this study as LSM-WT. The Newton
method is applied to solve the resulting non-linear system. Exact characterization of both the Jacobian and
Hessian is established to ensure convergence, stability, and robustness of the Newton algorithm. The compu-
tational effort for applying LSM-WT is predominately governed by the construction and factorization, at each
Newton iteration, of the original least-squares scattering matrix A with multiple right-hand sides. The matrix A

is of dimension N/ � N/ (with N/ defined as the total number of basis functions) and the number of right-hand
sides is 1

2
ðNX þ 1� NX þ 2Þ, where NX is the number of distinct rotational angles considered. Subsequently, a
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construction and factorization of a Newton matrix is required by the LSM-WT approach. However, the size of
this system, NX � NX is much smaller than the scattering problem, i.e., NX � N/.

An evaluation of the scattered field from a prototypical sound-hard disk-shaped scatterer circumscribed by
a Robin-type boundary provided a model for assessment of LSM-WT evaluated with respect to conventional
application of LSM. The results obtained from the numerical experiments, performed with 4 plane-waves,
demonstrate: (a) the LSM-WT algorithm converges to the prescribed level of accuracy even when initiated
from a configuration that deviates greatly from the pre-asymptotic region, (b) LSM-WT is shown to reduce
the size of the LSM system by over two orders of magnitude depending on the frequency range, and (c)
for higher frequency regimes and/or accuracy levels, LSM-WT allowed determination of the field whereas
application of LSM became computationally prohibitive.

Finally, it is anticipated that the performance of the LSM-WT approach can be improved by using an adap-
tive strategy to intelligently partition the computational domain. This can be accomplished by an a posteriori
error estimate that we have established. This estimate can be easily employed since it requires the computation
of the jumps of the scattered field over the interior element edges. Such values are, in practice, readily available
as they are required for the construction of the matrix A corresponding to the direct scattering system.
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